Continual learning with VAEs

Timo Flesch, David Nagy
Outline

● Part 1: Quick Tutorial (Timo)
 ○ Variational Inference
 ○ Variational Autonencoders

● Part 2: Discussion of Paper (David)
Variational Inference
Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies

Alessandro Achille, Tom Eccles, Loic Matthey, Christopher P Burgess, Nick Watters, Alexander Lerchner, Irina Higgins
UCLA, DeepMind
achille@cs.ucla.edu,
{eccles, lmatthey, cpburgess, nwatters, lerchner, irinah}@google.com
Goals

- continual learning of new tasks without catastrophic forgetting
 - unlabeled (but “piecewise stationary”)
 - unsupervised

- reuse previous representations on new tasks (positive transfer)
 - improve sample efficiency
 - enables scaling with number of tasks
 - how? learn structure of current environment, reasonable expectation of natural tasks is that they tend to adhere to structure of the real world

- extend VAEs to piecewise stationary data instead of i.i.d.
Related work

continual learning approaches:

- **data-based**, augment current data with older training data
- **architecture-based**, dynamically augment network with task-specific modules, often with shared intermediate representations for positive transfer
- **weights-based**, slow down learning in important weights

- 1 & 2 are inefficient in terms of memory use
- 3 typically uses task labels to update loss function after switches
- most of CL literature deals with task-based settings, which reduces positive transfer, because implicitly learned representations overfit by discarding information that is irrelevant to current task but may be required for future tasks
Problem formalisation

- set S of K environments

 $S = \{s_1, s_2, ..., s_K\}$

- set Z of N independent data generative factors

 $Z = \{z_1, z_2, ..., z_N\}$

- the aim of life-long representation learning can be seen as estimating the full set of generative factors
Generative model

- Generative factors $\sim \mathcal{N}(0, I)$
- Environment $\sim \text{Categorical}(\pi_1, \ldots, \pi_K)$
- Env. mask $\sim \text{Bernoulli}(\omega_1, \ldots, \omega_K)$
- Observation $\sim p(\cdot | z^s, s)$
Inferring the generative factors z

$$q(z^s|x^s) = a^s \odot \mathcal{N}(\mu(x), \sigma(x)) + (1-a^s) \odot \mathcal{N}(0, I)$$

- unused factors set to prior
- note that μ and σ depend only on the data x and not on the environment to ensure that the semantic meaning of each latent dimension remains consistent for different environments.
Inferring the generative factors z

- For the factors that are used in a given environment
 - MDL loss, almost the same as β-VAE loss but instead of β, a target rate is used
 - progressively increasing rate helps with disentangling (Burgess et al., 2017)

$$L_{MDL}(\phi, \theta) = \mathbb{E}_{z^s \sim q_{\phi}(\cdot|x^s)}[-\log p_{\theta}(x|z^s, s)] + \gamma \text{KL}(q_{\phi}(z^s|x^s)||p(z)) - C$$

- Reconstruction error
- Representation capacity
- Target
Inferring the generative factors \mathbf{z}

- For the factors that are used in a given environment
 - MDL loss, almost the same as β-VAE loss but instead of β, a target rate is used
 - progressively increasing rate helps with disentangling (Burgess et al., 2017)

$$
\mathcal{L}_{\text{MDL}}(\phi, \theta) = \mathbb{E}_{\mathbf{z}^s \sim q_{\phi}(\cdot | \mathbf{x}^s)} \left[-\log p_{\theta}(\mathbf{x} | \mathbf{z}^s, s) \right] + \gamma \left[\text{KL}(q_{\phi}(\mathbf{z}^s | \mathbf{x}^s) \parallel p(\mathbf{z})) - C \right]^2
$$

- Reconstruction error
- Representation capacity
- Target

Single latent traversals
Inferring the latent mask a

- beta-VAE / MDL indirectly optimises

$$\mathbb{E}[q(z^s | x^s)] \approx p(z)$$
Inferring the latent mask a

- beta-VAE / MDL indirectly optimises

$$\mathbb{E}[q(z^s|x^s)] \approx p(z)$$

- meaning that the marginal posterior will be similar to the prior for known factors. This is used to define an atypicality score, which, if larger than some threshold λ, turns off the factor

$$\alpha_n = \text{KL} \left(\mathbb{E}_{x_{\text{batch}}} [q_\phi(z^s_n|x_{\text{batch}}^s)] \parallel p(z_n) \right)$$

$$a^s_n = \begin{cases}
1, & \text{if } \alpha_n < \lambda \\
0, & \text{otherwise}
\end{cases}$$

- note that latent dimensions z_n that have not yet learnt to represent any data generative factors, are automatically unmasked
Inferring the environment s

- may seem tempting to learn through amortised VI but
 - parametric learning is slow, whereas new data clusters have to be inferred very fast
- They use a heuristic instead
 - decide whether new dataset s_{r+1} or one of the r previous datasets
 - is current data likely under any of the known environments?
Inferring the environment s

- is current data likely under any of the known environments?
 - even if yes, could just be using a subset of the same factors
 - so we have to also check if generative factors are the same
 - moving triangle and moving square are different environment, even though they share the same generative factor (object position)
 - so we also have to check reconstruction accuracy

$$s = \begin{cases} \hat{s}, & \text{if } \mathbb{E}_{z^\hat{s}} [p_\theta(x^s_{\text{batch}}|z^\hat{s}, \hat{s})] \leq \kappa L_{\hat{s}} \land a^s = a^{\hat{s}} \\ s_{r+1}, & \text{otherwise} \end{cases}$$

- auxiliary classifier to infer most likely previous experiment

$$\hat{s} = \arg \max q(s|x^s_{\text{batch}})$$
Preventing catastrophic forgetting

- deep generative replay
- dreaming data from using a snapshot of VASE
- Wasserstein distance for encoder and KL divergence for decoder

\[\mathbf{x}_{\text{old}} \sim q_{\theta_{\text{old}}} (\cdot | \mathbf{z}, s_{\text{old}}) \]

\[s_{\text{old}} \sim p(S) \]

\[\mathbf{z} \sim p(\mathbf{z}) \]

\[\tilde{\mathbf{x}} \]

\[\tilde{\mathbf{z}} \]

\[\mathcal{L}_{\text{past}} (\phi, \theta) = \mathbb{E}_{\mathbf{z}, s', \mathbf{x}'} \left[D[q_{\phi}(\mathbf{z} | \mathbf{x'}), q_{\phi'}(\mathbf{z'} | \mathbf{x'})] + D[q_{\theta}(\mathbf{x} | \mathbf{z}, s'), q_{\theta'}(\mathbf{x'} | \mathbf{z}, s')] \right] \]

- snapshot parameters are set to current parameters every \(\tau \) training steps
Model summary

\[
\mathcal{L}(\phi, \theta) = \mathbb{E}_{z^s \sim \phi(\cdot | x^s)} \left[-\log p_\theta(x | z^s, s) \right] + \gamma \mathbb{KL}(q_\phi(z^s | x^s) || p(z)) - C^2 + \\
\mathbb{E}_{z, s', x'} \left[D[q_\phi(z | x'), q_{\phi'}(z' | x')] + D[q_\theta(x | z, s'), q_{\theta'}(x' | z, s')] \right].
\]

MDL on current data

“Dreaming” feedback on past data
Results

VASE

• moving fashion → MNIST → moving MNIST
• latent traversals at the end of training seeded with samples from the three datasets
• rows correspond to latent dimensions z_n, columns correspond to the traversal values
• latent use progression throughout training is demonstrated in colour

Baseline
Semantic transfer

- the two domains share many semantically related factors z, but these are rendered into very different visuals x (EDE, NatLab)
- the disentangled VASE finds semantic homologies between the two datasets (e.g. cacti - red objects, fog - wall). The entangled VASE only maps lower level statistics.
Imagination-driven exploration

- You have just learned about translation of fashion items along the x and y axis
- Now you see a number
- If your learning algorithm is compositional, you should be able to imagine how you translate that number along x and y, too!
- This is precisely what imagination-driven exploration achieves
Imagination-driven exploration

Idea:

- Train network on dataset X1, learn latents
- Obtain a sample z^* from your prior $p(z)$
- Now feed in an exemplar from a new dataset X2
 - store the latent z^* activated by that sample
 - Minimise the mismatch between new latent z and old latent sample z^*, by choosing an action $g(x,z)$ that moves the new image from X2 appropriately

$$\mathcal{L}_{agent} = \mathbb{E}_{x \sim p(x)} \mathbb{E}_{z^* \sim p(z)} \mathbb{E}_{z \sim q(z|g(z^*,x),x)} \| z^* - z \|^2.$$

- Generate an output by passing the new z through the decoder, let’s call this x_2^*
- Store this new output (translated object from X2) in your training data
Imagination-driven exploration