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• sequential decisions 

• vigour
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how should we set m?
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indirect actor

mL = 𝔼[r |a = L] = ⟨rL⟩

mR = 𝔼[r |a = R] = ⟨rR⟩
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indirect actor

mL = 𝔼[r |a = L] = ⟨rL⟩

mR = 𝔼[r |a = R] = ⟨rR⟩

mL → mL + ϵ(rL − mL)

mR → mR + ϵ(rR − mR)

update rule:

Q(a = R)



indirect actor

reward swap

⟨rL⟩ = 0.05

⟨rR⟩ = 0.25

⟨rL⟩ = 0.25

⟨rR⟩ = 0.05
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𝔼[r |m] = ⟨r⟩

direct actor

= P(L)⟨rL⟩ + P(R)⟨rR⟩

= 𝔼a∼P(a|m)[ra]

update rule:
mL → mL + ϵ ΔmL

𝔼[ΔmL] ∝
∂⟨r⟩
∂mL



direct actor

∂P(L)
∂mL

= βP(L)(1 − P(L))

∂P(R)
∂mL

= − βP(R)P(L)

sensitivity of 
choice to m

mL P(L) ⟨r⟩

mL

mL + ΔmL

sensitivity of 
reward to 

choice

∂⟨r⟩
∂mL

= βP(L)(⟨rL⟩ − ⟨r⟩)

⟨r⟩
⟨r⟩ + Δ⟨r⟩



direct actor

mL → mL + ϵ ΔmL

for update rule:

𝔼[ΔmL] ∝
∂⟨r⟩
∂mL

mL → mL + ϵ(rL − v) | a = L

∂⟨r⟩
∂mL

= βP(L)(⟨rL⟩ − ⟨r⟩)

decay + multiple actions

mb → (1 − ϵ)mL + ϵδab(ra − v)
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• immediate choice


• evolutionary programming 

• sequential decisions


• vigour

instrumental conditioning



The Skinnerian Pigeon



The Hapless Pigeon
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invigoration

reward

inhibition

go to win

nogo to win

go to avoid 
losing

nogo to avoid 
losing

punishment
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• data 
• inst = RW + noise 
• inst + bias 
• inst + bias + Pavlovian 

• go+𝜔𝑉(𝑠𝑡)

(Guitart-Masip et al, 2011; 2012)



instrumental control Pavlovian control

(Dayan et al., 2006)



• immediate choice 

• evolutionary programming 

• sequential decisions 

• vigour

instrumental conditioning



The Problem of Time

Humboldt, Saskatchewan 

‘ethologically’: 
maximize long term reward
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Hunger

A Simpler Example

4

0

action reward

so do:

requires a signal reporting the reward:   
dopamine
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A Simpler Example

0

0

action reward

so do: ?
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Hunger

Two Ideas

• idea a: learn values V for states 
–                        is immediately valuable 
–                        is secondarily valuableV(   )   = 4

 r(        ) = 4



Idea a: learn values V for states
• prediction: 

• prediction error:  𝛿 = − 𝑉(    )4

𝑉(    )

r(      )

𝑉(    ) → 𝑉(    ) + 𝛼  ×

𝑉(    )

learning 
rate

 𝛿• learning rule:    
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Hunger

Two Ideas

• idea a: learn values V for states 
–                        is immediately valuable 
–                        is secondarily valuable 

• idea b: use values as surrogate feedback 
–               :                
–               :

V(   )   = 4
 r(        ) = 4

= 4
= 3

V(   )
V(   )

so do:



= 4
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= 3

Hunger =V(   ) 0 + V(   )
V(t) =  r(t) +  V(t + 1)
δ(𝑡) =  r(t) +  V(t + 1) − V(t)

Sutton: temporal difference prediction error

prediction error

=V(   ) 4

V(t) =  r(t)  

Idea b: Use values as surrogate feedback

δ(𝑡) =  r(t)  − V(t)

Bellman: asynchronous dynamic programming
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Prediction, Prediction Errors and Dopamine

prediction, reward prediction, no reward

Schultz et al

no prediction, reward

δ(𝑡) = r(t) + V(t + 1) − V(t)

(t)δ
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Hunger

Idea 3: Prediction for Control

V(   ) = 4 V(   ) = 3If: 

V(   ) = 3.5

δ(𝑡) =  r(t) +  V(t + 1) − V(t)

δ(𝑡) =   0 + 3.54 − =   + 0.5

δ(𝑡) =   0 + 3.53 − = − 0.5

so increase the probability of 



(direct actor)

critic

actor

actor-critic

mb → (1 − ϵ)mL + ϵδab(ra − v)

δ = ra(u) + v(u′￼) − v(u)

w(u) → w(u) + ϵδ

mb(u) → (1 − ϵ)mb(u) + ϵAδabδ



m1

m2

m3

mn dopamine signals to both motivational & motor 
striatum appear, surprisingly the same 

suggestion: training both values & policies 

actor-critic

δ



actor-critic

• direct actor 

• immediate choice version of policy gradient 

• policy gradient for sequential decisions 

• REINFORCE algorithm, likelihood ratio PG, MC estimate 

• can be used without baseline, worse convergence 

• with baseline = V(s), we also have to learn value 

• learn V (via e.g. TD rule): critic 

• learn policy: actor



model based RL



model based RL



model based RL
R L



• immediate choice 

• evolutionary programming 

• sequential decisions 

• vigour

instrumental conditioning



55

Vigour

• Two components to choice: 
– what: 

• lever pressing 
• direction to run 
• meal to choose 

– when/how fast/how vigorous 
• free operant tasks 

• real-valued dynamic programming
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The model

choose 
(action,τ)  
= (LP,τ1)

τ1 time

Costs 
Rewards

choose 
(action,τ) 
= (LP,τ2)

Costs 
Rewards

τ
co

st
LP

NP

Other

?
how 
fast

 τ2 time
S1 S2

τ
VC

vigour cost unit cost 
(reward)

S0

UR

PR

𝐶𝑎
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The model

choose 
(action,τ)  
= (LP,τ1)

τ1 time

Costs 
Rewards

choose 
(action,τ) 
= (LP,τ2)

Costs 
Rewards

 τ2 time
S1S0

Goal: Choose actions and latencies to maximize  
the average rate of return (rewards minus costs per time)

S2
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⇒ Choose action with largest expected reward minus cost
1. Which action to take?

• slow → delays (all) rewards 
• net rate of rewards = cost of delay  

(opportunity cost of time)

⇒ Choose rate that balances vigour and opportunity costs

2. How fast to perform it? 
• slow → less costly (vigour cost)

Average Reward Cost/benefit Tradeoffs

explains faster (irrelevant) actions under hunger, etc
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What about tonic dopamine?

Phasic dopamine firing = reward prediction error

moreless

Relation to Dopamine
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Tonic dopamine hypothesis

Satoh and Kimura 2003 Ljungberg, Apicella and Schultz 1992
reaction time

fir
in

g 
ra

te

…also explains effects of phasic dopamine on response times

$ $ $ $ $ $♫ ♫ ♫ ♫ ♫♫

+ direct evidence from Berke: pro and contra

∑ 𝛿𝑡 =  ∑ [𝑟𝑡+1 + 𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)]

=  ∑ [𝑟𝑡+1] + 𝑉(𝑠𝑇) − 𝑉(𝑠0)

so the average is the same 
as the average total reward, 
the timing is just moved around
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Classical/Instrumental Conditioning

• Ethology 
– optimality 
– appropriateness 

• Psychology 
– classical/operant 
   conditioning

• Computation 
– dynamic progr. 
– Kalman filtering 

• Algorithm 
– TD/delta rules 
– simple weights

• Neurobiology
neuromodulators; amygdala; OFC 
nucleus accumbens; dorsal striatum

prediction: of important events 
control:	      in the light of those predictions



• reproduce figures 9.8 (policy 
evaluation) and 9.9 (actor-critic) 
from the chapter for the 
environment of figure 9.7 

• try actor critic for a maze task

homework



• Tutorial by Noémi Éltető 
tomorrow at DZNE Lecture 
Room 

homework


