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patch learning

QE]] issue:
* all the experiences have to be available at the same time
= » unfeasible requirement due to memory constraints.
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what use is an episodic memory? [1]
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B / tap ?
3 9 tap ?







VS

structure 1 structure 2

e online structure learning
e comparison of model structures

e requires sufficient statistics for each candidate structure






Memory systems

e can't store sufficient statistic, can’t store data either

e proposed approximate solution:

dlelelelelololelele

A 5 tap shit 18  no rain  vyes 0
_|_
B 7 tap pyjamas 17 yes sunny yes 1
B 8 bottled pyjamas 19 no sunny vyes 1
sufficient statistics subset of episodes

for best structure



Memory systems

semantic episodic

concrete experiences
general knowledge about P

how the world works

p(x, z,60 | D) {ze) CD

_ . a subset of observations
a probabilistic model of the environment



formalisation

structure P(structure|episodes)

parameters P(parameter|episodes, structure)

v

sufficient statistics

observations P(x|episodes)



(Sanborn et al. 2010)

Leafiness

Branchiness

(Flesch et al. 2018)



toy setting

Mixture of Gaussians

e known variance and
mixing coefficients

e unknown number of
components
(structure learning)
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toy setting

Mixture of Gaussians

e known variance and
mixing coefficients

e unknown number of
components
(structure learning)

* unknown means
(parameter learning)




unconstrained learner

P(x|all episodes)

semantic learner

P(x|sufficient statistics)

episodic learner

P(x|sufficient statistics) + Z o(episode; )
EM



unconstrained learner

P(x|all episodes)
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unconstrained learner

log marginal likelihood




semantic learner

P(x|sufficient statistics)



(Bramley et al. 2017, Nagy et al 2016)
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(Bramley et al. 2017, Nagy et al 2016)
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\ %oo el P(D|M,;, )
generative replay

P(D| Mcurr.)‘\‘?\/: . marginal likelihood estimate

® = o, LP(D I M))]
/ \ P (D ‘ Malt.Z)

posterior reconstruction

min KL[P(x|M ,,D)||P(x|M,,..5)]
PO|M,,,,,.1)



unconstraineao semantic
learner learner

time time

log marginal likelihood

When the episodes are converted into the posterior for the first model, there are features of the
data that it can’t represent.

't is often these features that provide the evidence for alternative models
Since we lose these features at every step, evidence for alternative models can’t accumulate,

which introduces a bias towards the current model



episodic learner

P(x|sufficient statistics) + Z o(episode; )
EM
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episodic learner

sliding window

L1 T2

selective memory




selective memory

* what points are most informative about the model/
parameters?

e points that can be easily summarised in a distribution should
be stored in semantic memory, outliers should be stored

separately

surprise: Dy (new posterior||posterior)

e a 10 hour drive on the highway may be stored as a
summary

« while the first day at school should be remembered in
detail
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tree task

Cue Stimulus Response Feedback

Accept Reject Reject

{

Time

(Flesch et al., 2018)



tree task

north south reward
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(Flesch et al., 2018)



tree task

training

worems |11 LA IO

blocked

(Flesch et al., 2018)
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order effect

log P(D | k)

'Interleaved’ ‘blocked’



linear
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Mmemory systems

semantic episodic

general concrete
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now the world
works

I. why have an episodic memory?



Mmemory systems

semantic episodic

general concrete

<nowledge about experiences

now the world

works
I. why have an episodic memory?

I I. compression of episodic memories



semantic compression of episodes






boo ¢

o X d &0 @ & 4
¢ o4 & & & J S

5

¢

@
&L

s & G

~DOR A D U A N

Jo el ¢ & X

3 4 &

C

ool

(
(
4

B!
D
@

6 KX o o

of

GONARE: B T 0 A A <Y
P dE e [ ed &
& g F T I T A

o J d A L

C
C

3 &3k d L kT L

-1
~(

& o o & o 3

F o4 J

N



Anvne 24 enni  Stdemte

Gianluca Gimini




e

e

GRGIA Ay MAESTRN

Gianluca Gimini




Gianluca Gimini




Gianluca Gimini




{
STARBWCKS

- R

;
s

%) @ % @) =
srA\O\nN T

m.@m

COFFEER



Yy N 3
m."/f&’ ) s "‘” S ///, AQDAQW“;\\/AJJQS

Adidas

A AdidasA’D&\\.d%A‘i&f ;’/o///////
In.! /)] A ﬁ"/a.“ \» (&

R ddog adidas RdidesAdidans ADIDAS RHA0S A
W 00 000 g X S\ 7/ i, A
Zr anll W qUo uf 4 NS/ L

OdausddidogADIOM AJBJ., odidas o1 ADIDAS ADDIMSAD,DM
ADIDRASADIDASADI OAS AL W QdidasAdidas

ADIDAS ADIDAS 50 AD'DASAo\oAS o9

,’A "\ V /7% \\ g.“ \“ %, UQO\\‘ om“_}\d} J

d - AD \d a
ADIONS odidas *445 95 Aduag ADIDES kds aciDAS ADIDAS s G342

Nt 5 A M 8

B & s O 190 o odida5adid aSANONS 4 didds Adilmﬁ

%3 d idac ADIOAS 391405 34:dae OKEOS o Adidas @AaRE4* Gida
X\ |

A ll. \ 38 Aah\;“ 4\\ A 4\\ N A\ %‘:‘

\ |
Adidas Ad‘\do\sgﬁ% ANPAS o 0RS 00 idaS AN ing s Adides odidas cdiaas g"*s
ENER LI W) STERRNR AN IR\ WA

odidas adiddsaiqqs oA da> adidas &id‘l"u{du idosadidas 4 Lo SdidaS

]
] !
‘o ”
- N




Near perfect %
drawing oot Lockef 8%
Forgot the referee Fuixc
the wrong way et 407

Drew a hat o
on the referee ﬁ
Drew a shoe

Instead of a referee roor
~m‘€k



is the lesson from this simply that human memory is poor?
memory resources are certainly bounded

but it is possible to do badly, do well or even optimally in
relation to available resources



optimal compression
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optimal compression

memory
resouree compression
without
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optimal compression

memory
resource

realisable codes

optimal codes

D
D = ‘[d()C,X)] expected
distortion measure? distortion
|

what changes in sensory input are relevant for the brain?




perception as inference

what we observe what we are interested in
* incoming photons * what objects are around us
* air vibrations — * how far
* temperature fluctuations . * who are around us
* certain molecules inference * what are they thinking
* whatis going to happen




perception as inference

observed variables latent variables
* incoming photons * what objects are around us
* air vibrations — * how far
* temperature fluctuations . * who are around us
* certain molecules inference * what are they thinking
* whatis going to happen




perception as inference




perception as inference




perception as inference

schemas

objects

shapes

edges

sensory information



Semantic compression hypothesis

Relevance in sensory input is defined by the latent variables of the
internal generative model of the environment used for perception and
decision making.

Memory approximates optimal lossy compression with the distortion
metric defined by these latent variables.
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generative models

lossy compression

M.l. as distortion
(Tishby et al. 1999)

r : R r : : R
Semantic Rate Distortion
Compression Theory
- J - J
variational approx.
(Kingma et al. 2013)
v v
r R r g " R
NnTormation
VAE
Bottleneck (uns.)
- J - J
extension variational approx.
(Higgins et al. 2017) (Alemi et al. 2016)
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beta-VAE
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Domain expertise

Since compression hinges on environmental statistics that were learned
from observations, experience in a cognitive domain increases recall
accuracy for observations congruent with this statistics.
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reconstructions (game)




reconstructions (random)
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mean error/sequence
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(experiment: Baddeley et al., 1971, model: Frater et al., 2022)



Gist-based errors

Features of the experience that were not stored in the memory trace will
be sampled from the generative model, assigning values that could
have been part of the observation with high probability.



gist-based errors
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gist-based errors
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gist-based errors
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snore ?

sleep ?
aeroplane ?
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model reconstruction
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stimulus
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Rate distortion tradeoff

Available memory resources are unlikely to be constant as a function of
time. Information theory provides a principled way of discarding
information so that memories degrade gracefully.
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variable-rate compression

\0,0/ input

each of these is a separately trained B-VAE!

distortion




hierarchical compression
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hierarchical compression
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hierarchical compression
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(Ziemba et al, 2016)



model experiment
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conclusions

We've argued that

 episodic memory can mitigate the problem of continual learning in case of uncertainty over
model structure

e and that semantic memory can be used to compress episodes,
 which can be formalised in the framework of lossy compression
* and provide a normative, unifying explanation of a large variety of memory errors.

e Furthermore, we have proposed hierarchical generative models as a solution to variable-
rate compression within a single model



outstanding questions
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