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Chapter 1

Introduction

The human brain is constantly bombarded with sensory information, as

photons, vibrations, molecules, and other messengers of the state of affairs in

the outside world arrive at the senses, being then translated into the activities

of sensory neurons. From this constant barrage of sense data, what should the

human brain retain and what should it forget? That is the central question

driving this thesis. Answering the question could shed light on how human

memory works and why it works that way, constituting a key piece in our un-

derstanding of the brain. Furthermore, it could result in uncovering principles

helpful for building artificial agents with human-like capabilities. However, as

we will see, this question is intertwined with a host of others, such as what rep-

resentations does the brain transform this sensory input into, what concepts

does it use to interpret it and how does it construct models out of them?

In this thesis I take a normative approach, working towards an account of

how the brain works starting from an analysis of the computational problems

that it has evolved to solve. A primary objective of normative approaches is

to develop vocabulary and formal tools for thinking about these problems,

which will enable a characterisation of the space of optimal and near-optimal

solutions. To the extent that evolution shaped the brain to solve the identified

problems, the optimal solutions can serve as useful points of comparison and

both explain and predict the brain’s behaviour in a parsimonious way. Due to

the focus on optimal solutions, the normative approach has a large overlap in

interests with machine learning and hopefully, both the vocabulary and the

solutions can be exploited for the construction and improvement of artificial
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1. Introduction

Figure 1.1: Left, Necker cube. The cube can be perceived either as protruding
towards the bottom left, or the top right, depending on which square-shaped
component is assumed to be closer to the viewer. Right, a visual illusion called
the impossible cube, playing on the ambiguity present in the Necker cube. The
original version of this illusion appears in Escher’s 1958 lithograph Belvedere.
Cognitive illusions such as the impossible cube can often be explained at the
computational level without making commitments to the ‘hardware’ imple-
mentation. For detailed examples see section 1.2.2.

agents.

My approach in this work aligns with the rational analysis framework of

Anderson in the field of cognitive science [1] and the top-down analysis of

Marr and Poggio’s levels of analysis for neuroscience [2]. Marr famously argued

that complex information processing systems such as the brain should span

multiple complementary levels of analysis, specifically the computational, the

algorithmic and the implementation levels. In a normative analysis, we start

from the top down, asking first the questions of what computational problem

needs to be solved by the system and what algorithmic procedures can possibly

solve it. Once we have mapped the space of possible solutions on this ‘software’

level, we can ask how these algorithms can be implemented in the physical

‘hardware’ of the brain. A bottom-up analysis would proceed in the opposite

direction, starting with building blocks such as detailed models of neurons and

attempting to understand how they can be combined to produce behaviours

similar to the human brain [3, 4].

In some cases, the origin of observed phenomena can be clearly identified

with the consequences of theories at a specific level of analysis. For example,

the bistable perception of a Necker cube originates in the existence of multi-

ple possible interpretations of a projection of a 3D object to a 2D screen – a

computational level explanation that does not require many biological com-

mitments to how the visual cortex works (Fig. 1.1). However, it is important
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1. Introduction

to note that these levels of description do not always separate clearly, and

starting our analysis from the top down is a trade-off that carries risks with it.

For instance, the extent to which the computational problems being studied

exerted evolutionary pressure on the development of the brain can be overes-

timated. A second issue is that there are multitudes of constraints on many

different scales that the brain has to satisfy and they can interact in non-trivial

ways across these levels of analysis.

In this thesis I follow a top down approach. Therefore, in the rest of the

chapter, I will first attempt to identify the computational problems that mem-

ory has to solve and introduce some of the formal ideas and frameworks that

previous research has converged on. I introduce the concept of memory systems,

most importantly the distinction between episodic and semantic memory. In

Chapter 2, I identify a fundamental computational challenge for learning and

propose that it provides a normative rationale for the existence of an episodic

memory system which retains seemingly irrelevant details as part of the mem-

ory trace. Then, in Chapter 3, we explore the idea that semantic memory

supports the episodic memory system by enabling efficient storage of episodic

memories through offering a model for a lossy compression of experiences. I

demonstrate that this this process offers a parsimonious unifying explanation of

a variety of memory distortions that previous research have identified. Finally,

in Chapter 4 I explore two examples of how some of the computational and

algorithmic level ideas discussed in the previous chapters can be implemented

in neural networks.

1.1 The computational problem of memory

An organism’s survival critically depends on its ability to gather informa-

tion from the environment through its senses and to affect it through actions. A

straightforward approach to choosing actions is to base them solely on current

sensory input, for example moving in the direction of a chemical gradient to

locate higher concentrations of nutrients. However, a powerful strategy devel-

oped by complex organisms is to anticipate changes in the environment before

they happen, enabling the organism to act earlier than competitors or before

the opportunity to affect the unfolding of environmental processes is gone.

5



1. Introduction

Figure 1.2: Internal representation of the environment in the human brain.
Drawing made with Midjourney in the style of Escher.

This ability to predict future sensory input confers a tremendous advantage

to complex organisms and has been proposed as the key driving force behind

the evolution of the neocortex [5]. Therefore, my starting point in this thesis is

that supporting the capacity for prediction is one of the main goals of memory

in complex organisms.

How is prediction possible? To anticipate changes in the environment, the

organism needs to reshape part of its body1 into an artefact that in some

respect mirrors the evolution of external processes. A general strategy is to

create a simplified internal copy of the environment, an internal model or

internal representation that can be used to simulate the original process and

observe the outcomes2. These simulations can then be used to evaluate the

consequences of actions the organism might consider taking.
1Or part of its environment.
2This is not to say that the brain has to maintain a single consistent internal model.

There could be various competing models for different environmental contexts. Nor does
this mean that all actions have to be based on simulations from explicit models, e.g. in
situations that require rapid reactions a more direct mapping between stimulus and action
might be preferred.
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1. Introduction

Internal models, effective theories

Internal models are limited by the physical size of the brain as well as

metabolic constraints on computation, and available resources are severely

mismatched to the complexity of maintaining a faithful simulation. Crucially,

a model is only useful for prediction if the speed of simulation can exceed the

speed at which environmental processes unfold. Therefore, the brain needs to

find computational shortcuts by constructing a simplified representation that

only includes environmental variables that are most relevant for the decisions

it has to make. While to my knowledge there is no widely accepted and gen-

erally applicable normative framework for how such simplified representations

should be constructed, specific cases of the problem have been solved in various

fields. In physics for example, such simplified models that describe a complex

system on a macroscopic scale are known as effective theories. Similar concepts

have also been formalised as reduced models [6] or abstractions [7]. Intuitively,

an effective theory is a simplified or coarse-grained macroscopic description

of a system that emerges from a low-level microscopic description by averag-

ing over or leaving out interactions, objects and other complexities that are

inconsequential to the macroscopic description. The macroscopic description

often uses qualitatively different concepts from the microscopic one, which is

often termed emergence. One of the simplest examples originates in statisti-

cal physics, describing how macroscopic quantities such as temperature and

magnetisation emerge from a high-level description of a large grid of identical

nuclear spins. However, the human brain is typically faced with environmental

contexts that are far more complex and rarely tractable analytically. I would

argue that for many of these contexts the best effective models are constituted

by board games and video games [8], which can be seen as simplified descrip-

tions of environmental contexts, where objects and interactions are chosen such

that they mimic real world systems but stay closer to the representational ca-

pacity of the brain (Fig. 1.3).

Semantic and episodic memories

Returning to our original question of what to retain from a continuous

stream of sensory experience, we conclude that it is an important goal to

7



1. Introduction

Figure 1.3: Excerpt from Escher, Metamorphosis III. Here, it is used as an
illustration of the process of constructing effective theories or abstractions:
relevant concepts transform and new ones emerge as we look at the same
system at successively larger scales, eliminating aspects deemed irrelevant at
each step. A set of elementary building blocks viewed at a larger scale might
be better described as a city, and the operation of a city at a different scale
and from the viewpoint of certain agents might be best captured in the form
of a board game such as chess.

retain information that is necessary for supporting the organisms ability to

predict. In particular, we identified a key piece of this challenge is to extract

the information needed to construct and update an internal model, a simpli-

fied representation of the environment. Indeed, formalising this information

selection problem as maximising predictive ability while retaining as little to-

tal information as possible [6], it can be shown that the optimal solution is to

learn the generative model that produces the observations [9]. Furthermore,

the amount of information that the agent has regarding future observations

is precisely the information that its approximate generative model contains

regarding the true process.

In the study of human memory, maintaining general knowledge about how

the world works has been identified as one of the two fundamental memory

systems that comprise long-term memory. This first system is called semantic

memory, responsible for storing common facts about the world (such as how

common household objects work for example), as well as the meanings of words

and concepts. In formal treatments, semantic memory is often defined as a

generative model of the environment [10, 11, 12]. The second system, known as

episodic memory, is responsible for preserving specific events and experiences

that have occurred in a person’s life. Episodic memories can be likened to

vivid snapshots of lived experience and are believed to be closely related to

the ability for ‘mental time travel’ in humans.

In this thesis, I aim towards a normative account of the semantic and
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1. Introduction

episodic memory systems and their interactions. Both memory systems retain

information from past experiences but in complementary ways and I aim to

uncover their normative role in supporting the goals of biological agents. In

the following section, I focus on semantic memory and discuss the normative

framework of probabilistic generative models in which its main function of

representing knowledge that supports prediction and other cognitive functions

can be formalised. A proposal for the normative rationale behind the existence

of episodic memory is one of the main contributions of this thesis and will be

the subject of Chapter 2.

1.2 Memory as knowledge: semantic memory

Maintaining knowledge of the environment is a crucial responsibility of hu-

man memory, and this responsibility rests primarily with the semantic memory

system. This section aims to provide an overview of key ideas from prior re-

search that can serve as a foundation for a normative account of how this

responsibility can be met. First, I will outline the reasons for why knowledge

representation in the brain, particularly in semantic memory, should be in the

form of a probabilistic generative model. Then, I briefly introduce the the-

oretical foundations of probabilistic models, including graphical models and

probabilistic programs. I show how this approach addresses many of the key

challenges in cognition, including perception as unconscious inference. Finally,

we examine how learning, or the construction of a representation of the envi-

ronment over an organism’s lifetime, can be achieved within the framework of

probabilistic inference.

1.2.1 Knowledge representation

How can knowledge be represented in a physical system such as the brain? I

have argued that to perform predictions, complex organisms shape part of their

brain into an artefact that in some sense mirrors the environment. Human-

made prediction devices, for example, orreries such as the Antikythera mecha-

nism serve as intuitive examples of this notion of mirroring. The Antikythera

mechanism is an ancient device from the 1st or 2nd century BCE and is con-

9



1. Introduction

Figure 1.4: Representing knowledge of the environment in physical systems.
The orrery on the right serves as a model of the solar system. The states of the
real system, Wi, correspond to representational states of the orrery, Li, and
this correspondence, S, is maintained over the time evolution of the systems,
allowing the user to predict the relative locations of the celestial bodies in the
future.

sidered one of the first computers. The device had multiple dials representing

observable astronomical information including the positions of the Sun and

Moon, the moon phase, eclipses, and possibly the locations of planets. By

turning the hand crank on the side of the device, interlocking gears within the

mechanism moved the dials to reflect a future state of celestial objects, allow-

ing the operator to predict future events, such as the date of the next eclipse,

by reading off the dials. The Antikythera device is a physical system, parts of

which (dial positions) map onto important features of another physical system

(celestial body locations), and crucially, these mappings are preserved under

certain transformations (e.g. time evolution). While a precise definition of the

concepts of representation and computation are difficult questions [13, 14], this

example intuitively illustrates how a physical system can represent knowledge

regarding an external physical system (Fig. 1.4).

Note that to be useful for prediction, the variables on the dials had to trans-

form in the same way as the positions of the celestial bodies, even though the

mechanism in the former case was a system of gears whereas in the latter it was

the force of gravity between planets and stars. This raises the important ques-

tion of what are the limits of such representation. Which kinds of mechanisms

can model which other kinds of mechanisms? Perhaps most importantly from

our point of view, which kinds of systems can be modelled by neurons? One of

the most important discoveries of the 20th century is that surprisingly, all ways

of defining effective computation led to the same set of functions. The definition

that most closely aligns with computation with physical devices was developed

10



1. Introduction

by Turing, using abstract machines that process discrete symbols arranged on

an infinite tape using a set of defined instructions known as Turing machines.

Inspired by his work, McCulloch and Pitts [15] analysed idealised neural net-

works and suggested that recurrent versions of these networks coupled with

memory could calculate the same functions as Turing machines. Although this

was just a conjecture 3, such a construction was developed much later by oth-

ers [17]. Turing also demonstrated that it was possible to build a universal

Turing machine (UTM) that could simulate any other Turing machine by en-

coding its instructions on the tape. These results led to the formulation of the

Church-Turing thesis, which asserts that any intuitively computable function

is computable by some TM and consequently by any other sufficiently intricate

(Turing complete) mechanism. This notion of computational universality, the

independence of the computation from the concrete physical mechanism is the

basis for the existence of software separately from its hardware level imple-

mentation. Furthermore, it suggests that the brain being made of neurons can

be consistent with it performing computations that are easier to understand

in formal systems adapted to the high-level challenges that it faces, providing

the basis for a top-down analysis.

Logic

The universality of computation suggests that we may begin our analysis

in a framework ideally suited to the problems of representing knowledge in

a format that can support predictions, simulations and reasoning. We start

with logic, the system that describes the laws of sound reasoning that origi-

nated with Aristotle and was refined by many others [18, 19]. Specifically, we

introduce a simple variant called propositional logic. To construct a model in

propositional logic, we have to specify the distinct states of the system. We

can decompose these states using state variables (atomic propositions). The

full model can be encoded as a truth table, where columns represent the atomic

variables in the system and the rows list all possible combinations of values for

those variables. Each row in the truth table represents a state of the system,

with the values for the atomic variables given in the corresponding columns.
3It is a common misconception that they have proved this, for details see Piccinini, 2020

[16].
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1. Introduction

Cough Flu TB Possible
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

Cough Flu TB Possible
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

Figure 1.5: Truth tables and inference in a toy diagnostic model. Left, the
original truth table. Right, the truth table with lines incompatible with the
query ‘If the patient is coughing but doesn’t have the flu, is it TB? ’ crossed
out.

The last column of the truth table defines whether the combination of truth

values represented in the row is a possible state of the system (see Fig 1.5. for

an example).

In order to be able to make inferences in a logical system represented by a

truth table, we can simply cross out all states that do not match the query or

are not possible. For example, if we make the query: ‘If the patient is coughing

but doesn’t have the flu, is it TB? ’, we need to cross out all states where

cough 6= 1 or flu 6= 0 and all states where possible 6= 1 (Fig. 1.5). The only

possible state left is row 3, where TB = 1 and therefore the answer to the

question in this simple model is yes.

The first issue with this method becomes apparent if we start refining the

model by adding new variables: the number of rows scales exponentially with

the number of variables. This makes both representing the table and answering

queries very cumbersome and therefore it is useful to introduce logical oper-

ators. Each operator is defined by a smaller table called a conditional truth

table (Fig. 1.6). Using these CTTs to decompose the full truth table makes the

definition of the model much shorter. For example, using logical operators, the

truth table in Fig 1. can be described simply by:

(flu _ TB) $ cough

Moreover, these operators enable more efficient means of performing inference

than the method of crossing out lines in the truth table:

A$ B,A ` B

12



1. Introduction

A B A $ B
1 1 1
1 0 0
0 1 0
0 0 1

A B A _ B
1 1 1
1 0 1
0 1 1
0 0 0

Figure 1.6: Conditional truth tables for the IFF operator (A $ B) and the
OR operator (A _ B).

A _B,¬A ` B,

where ` stands for logical entailment. For example, to answer the question

‘If the patient is coughing but doesn’t have the flu, is it TB? ’, or in logical

notation:
cough ^ ¬flu ` TB,

we can use the above two inference rules by substituting into the first rule,

cough$ (flu _ TB) , cough ` (flu _ TB),

and then substituting the above result into the second inference rule, we get:

flu _ TB,¬flu ` TB.

Therefore, we can conclude that in this situation, TB is true.

Despite the introduction of these logical operators, the expressive power of

propositional logic remains limited. However, let us consider a different kind

of problem first. Assume the question was ‘If the patient is coughing, does he

have TB? ’. If we attempt to use the method of crossing out incompatible and

impossible states of the world, we are left with only three possible states: two

in which the patient has TB and one in which he does not. This means that

there are queries which are undecidable in the system and in such cases, logic

fails to provide a useful answer.

Undecidability and degrees of belief

Unfortunately in practical situations, the majority of queries that the

agent is concerned with will fall into the category of undecidable or uncer-

tain. However, there is a simple modification we can make to allow the system

to deal with uncertain knowledge: we can allow the ‘possible’ column to take

13



1. Introduction

on non-binary values ranging from zero to one, corresponding to the agent’s

degree of belief or plausibility that the world is in that state. How should the

agent choose these numbers? Two well-known arguments exist regarding how

degrees of belief should be consistently assigned to states of the world.

First, Cox [20] attempted to demonstrate that if an agent’s degrees of be-

lief are expressed as real numbers and satisfy axioms encoding common sense

requirements, such as the requirement that different ways of arriving at an an-

swer from the same information should lead to the same outcome, then these

beliefs must adhere to the axioms of probability theory. Therefore, in extend-

ing logic to handle uncertainty, the degrees of belief should be chosen such that

they satisfy the rules of classical probability theory. Cox’s theorem can be seen

alternative axiomatisation of probability theory, equivalent to Kolmogorov’s

axioms but with a different motivation. In this correspondence with probabil-

ity theory, queries are formalised as the calculation of conditional probabilities,

where the condition defines the query. For example, our query in the diagnosis

system would correspond to the computation of P (TB|cough,¬flu). It can be

shown that the computation of conditional probabilities is equivalent to the

method of crossing out the incompatible rows of the truth table and renormal-

ising the remaining rows to sum to unity.

The second argument, called the Dutch book argument [21], assumes that

the agent is willing to make bets according to his degrees of belief. The ar-

gument shows that if these degrees of belief fail to follow certain consistency

rules, there will exist a set of bets that the agent would accept as fair, even

though it would guarantee a loss. Such a set of bets is called a ‘dutch book’

by professional bookmakers. As in Cox’s theorem, the consistency rules that

degrees of belief have to satisfy correspond to the rules of classical probability

theory.

Taken together, these two arguments are key pieces in motivating the use

of probability theory as a normative framework for understanding human cog-

nition. In particular, they suggest that the agent’s internal models should be

formalised as probabilistic models of the environment with the probabilities

corresponding to how plausible the agent considers each state to be. The

agent can query its representation through computing conditional probabil-

ities, which corresponds to probabilistic inference. I will discuss in more detail

14



1. Introduction

how various cognitive functions can be cast as probabilistic inference in section

1.2.2, but first, we return to the problem of expressivity.

Graphical models

Joint probability tables, the probabilistic extensions of truth tables suffer

from the same ‘curse of dimensionality ’ as their counterparts from logic, that

is, the problem of exponential scaling with the number of variables. Similarly

to logic, there are extensions of probability theory that exploit compositional-

ity to increase the expressivity of probability tables. Analogously to the way

that truth tables can be decomposed using operators defined by conditional

truth tables, joint probability tables can be decomposed using smaller condi-

tional probability tables. This trick leads to the concept of directed graphical

models in probability theory. In graphical models, each variable in the model

corresponds to a node in a directed acyclic graph (DAG), where the parents of

each node are the variables which are included in the conditional probability

table for the variable represented by the node. In addition to allowing for a

more compact representation of the joint probability table, graphical models

also enable inference algorithms that make certain kinds of queries such as

statistical dependencies between the variables more efficient to compute.

Since graphical models play a central role in probabilistic models of cogni-

tion, we consider them in more detail. In order to see how graphical models

enable a more compact representation of the joint distribution, we first use the

chain rule for probabilities to factorise it for an arbitrary ordering X1, X2, .., Xn

of n random variables as

P (x1, x2, . . . , xn) = P (x1|x2, . . . , xn)P (x2|x3, . . . , xn) . . . P (xn).

If the conditional probability of a certain variable Xi is only dependent on a

subset of the variables that it is conditioned on, and we call this subset pai

(the Markovian parents of Xi) then we have

P (xi|xi+1, ..., xn) = P (xi|pai).
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Figure 1.7: An illustration of the explaining away effect for probabilistic mod-
els. Left: We suppose that burglaries and earthquakes are unrelated and rare,
but both cause the house alarm to signal. It follows that being informed that
the alarm went off increases our concern about both an earthquake and a bur-
glary being in the house. However, if, in addition to hearing the alarm, we
also feel the ground trembling, it makes us less likely to think that we have
also been the victims of burglary. Right: Direct observation of latents is not
necessary for them to become dependent - if our model also includes the fact
that valuables go missing after a break-in, then noticing both the alarm going
off and the disappearance of possessions is enough to infer the presence of the
thief and conclude that there was probably no earthquake.

This means that the joint distribution can be written as

P (x) =
nY

i=1

P (xI |pai),

which can greatly reduce the information needed to specify it (that would

otherwise require 2n � 1 entries even for binary variables) by decomposing it

into smaller distributions. Furthermore, we can construct a DAG that satisfies

the same child-parent relationships with each variable having a corresponding

node and each conditional dependence a directed edge. We call such a graph G

a graph representation of distribution P. We introduce the following notation

for independence between variables

X ? Y , P (x) = P (x|y) , P (x, y) = P (x)P (y),

and for conditional dependence

X ? Y |Z , P (x|z) = P (x|y, z) , P (x, y|z) = P (x|z)P (y|z).

The graph representation provides an economical encoding of the inde-

pendence relations or correlation structure of the distribution. It also enables

these relations to be read out via graph-search algorithms instead of algebraic
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methods, and can be given a causal interpretation. We say that probabilistic

influence can flow from variable X to variable Y through a set of variables Z if

X 6? Y |Z . Independencies can be read off the graph representation by check-

ing whether there exists a trail (a path where the edges can point in either

direction) through which influence can flow between the variables in question

[22]. The flow of influence is blocked by conditioning on nodes Z if an only if:

1. the trail contains u m v, such that m 2 Z,

2. the trail contains u m! v, such that m 2 Z,

3. or the trail contains u ! m  v such that m /2 Z and no descendants

of m are in Z,

where u,m and v are nodes in graph G. An interesting dependence relation

is made evident by these criteria, called selection bias in the statistical and

explaining away in the AI literature. The third criteria implies that otherwise

independent parents can become correlated if we condition on their mutual

child. Informally, if we observe something that can be a cause of some other

observation, then this reduces the need for an alternative explanation. This

also happens if we don’t observe the hidden cause, but infer it from some

auxiliary observation. An illustration of this effect can be found in Fig 1.7.

While both the introduction of operators and inference rules in proposi-

tional logic and graphical models in probability theory are important con-

ceptual steps in dealing with the curse of dimensionality of truth tables and

probability tables respectively, their expressive power is still limited. Logic

has been extended into higher order logics, for example through the intro-

duction of predicates and quantifiers results in first order logic. An important

development was �-calculus, which in addition to corresponding to a higher-

order logic, has equivalent expressive power to universal Turing machines and

thereby capable of expressing any effectively computable function. �-calculus

can be directly extended to handle probabilities with the introduction of a ran-

dom sampling operator. This extension, called stochastic �-calculus, provides

the basis for a Turing-complete formalisation of probabilistic models called

probabilistic programs [23].
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Probabilistic programs

Probabilistic programs provide a Turing-complete modelling language that

allows for the construction of mental simulations of any computable generative

process. Each program represents a probability distribution through the rela-

tive frequencies of its outputs when executed. Running the program simulates

the environment and results in a possible world state that is consistent with

the model’s initial conditions. Each of these output states can be considered a

sample from the distribution represented by the program and as the number

of samples grows, the relative frequencies of the outputs tend towards their

probabilities, providing a sampling or Monte Carlo representation (for more

details on sampling representations see section 1.3.1).

Similarly to directed graphical models, an important advantage of prob-

abilistic programs that they can represent causal models. They have been

proposed as a framework for formalising core human competencies such as

intuitive physics and intuitive psychology by enabling the rich mental simula-

tions of causal processes that these require [24]. For example, intuitive physics

has been proposed to be similar to physics engines in modern video games that

are used to create environments for the players to interact with. These physics

engines contain simplified objects with properties and approximate dynamics

for updating the world state and usually also incorporate a graphics engine

that renders the 3D visual scene from the perspective of the player. This hy-

pothesis has been successfully applied in a range of human experiments [25,

8]. In relation to this thesis, probabilistic programs are important primarily as

a general formalisation of the compositionally defined, open-ended hypothesis

spaces that the human brain has to be able to navigate during learning. We

explore this view of learning as a process of finding the probabilistic program

that generates the observed data in section 1.2.3.

1.2.2 Probabilistic models of cognition

As discussed in the previous section, making inferences is a key part of

knowledge representation. Probabilistic inference has emerged as a unifying

language for modelling inference problems that arise in the fields of cognitive

science, machine learning and computational neuroscience. In this section, I
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provide an overview of how important cognitive functions, such as decision-

making and perception, can be framed as probabilistic inference, supported by

the world model stored in semantic memory.

Perception as inference

A fundamental challenge for the brain is the difference between the quanti-

ties it can directly measure through sensory neurons and those that are relevant

to plans and decisions. Quantities in the former category are things like im-

pacts of photons, vibrations in surrounding air, temperature and the presence

of certain molecules, whereas the brain is more concerned with determining the

presence and properties of objects, animals, individuals, and their thoughts and

intentions. This process of inferring the latent quantities based on the directly

measurable ones was termed unconscious inference by Helmholtz [26], alluding

to the observation that introspectively we only have access to the result of

this computation (the percept), not the raw sensory data (the sensation). This

unconscious inference in perception can be cast as probabilistic inference in

generative models. We have discussed that in the probabilistic framework, in-

ference can be performed by computing conditional distributions. For a query,

where we want to determine the latent or hidden variables given the observed

value o
0, we can apply the definition of conditional distributions and apply the

chain rule to the numerator to get

P (hidden | observed = o
0) =

P (observed = o
0 | hidden)P (hidden)

P (observed = o0)
. (1.1)

This expression for computing conditional distributions is called Bayes’ theo-

rem, and the method of computing the distribution of hidden variables given

observations is termed Bayesian inference in statistics. In Bayes’ theorem, each

term has a specific name based on its role in updating beliefs as new evidence is

observed. The distribution of the hidden variable before conditioning p(hidden)

is called the prior distribution, reflecting that it represents the beliefs of the

agent prior to the new experience. The prior is multiplied by the likelihood

term which encapsulates the effect that the evidence has on the belief over
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likely values for the unknown variable 4. The normalised product of these two

terms gives the updated beliefs over the hidden variable, therefore it is called

the posterior distribution. The normalisation constant is called the marginal

likelihood referring to the fact that it can be computed by marginalising over

the hidden variable in the numerator. Eq. 1.1. can then be written as

posterior =
likelihood · prior

marginal likelihood
.

Observing the terms in Eq. 1.1, we may notice that the likelihood and poste-

rior share the same variables, but with their roles reversed. If we consider the

interpretation we have introduced as Helmholtz’s perception as unconscious

inference (or more commonly just perception as inference), where the goal is

to find the true but hidden state of the environment (h) given raw sensory

data (o), this means that the answer to the question of ‘what is the state of

the environment if I observed o?’ is deeply connected to that of ‘what would I

observe if the state of the environment was h?’. Specifically, in order to com-

pute the posterior p(h|o), we have to invert the model that describes how the

observations are generated p(o|h). Therefore, the latter direction is sometimes

called a forward probability, generative direction, predictive direction or sim-

ulator whereas the former is sometimes called an inverse probability or model

inversion (see Fig. 1.8, left).

Computing the likelihood, or in other words, finding hidden states consis-

tent with the observation can be sufficient to perform inverse inference in some

problems, however this is not always the case. Observations are often ambigu-

ous due the ubiquity of non-injective mappings between physical quantities due

to resource and other biological constraints on the sensory systems of agents,

or inherent in the way the environment works. For example, the projection

of three dimensional objects onto a two dimensional image on the retina is a

non-injective process, resulting in many three dimensional objects having the

same image and making the inverse mapping ambiguous (Fig. 1.8, right). In

these cases, an expectation of likely states based on prior knowledge can help

in finding the correct interpretation, which is the role of the prior distribution.
4Note that when we call this term the likelihood, it is understood that we mean it as a

function of the hidden variable p(observed | ·) and therefore it is an unnormalised function,
not a probability distribution.
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Figure 1.8: Perception as model inversion. Left, during perception, the gener-
ative model that describes how the latent factors in the environment generate
the brain’s sensory input is inverted using Bayesian inference in an uncon-
scious process. Right, An example of the various sources of uncertainty in the
unconscious inference process. A two dimensional shadow is consistent with a
variety of three dimensional wire frames, and some additional source of knowl-
edge, for example of environmental statistics, is necessary to find the most
likely explanation. Shapes based on illustration in Kersten et al. [27].

Similar ambiguities are ubiquitous in perception both in vision, hearing and

understanding language. In colour vision for instance, the directly observable

input for the visual system is the distribution of photons falling on the retina

(called the spectral power distribution, SPD), or more specifically its projection

onto three basis functions, given by the response spectra of the S, M and L

cone cells, defining a three dimensional colour space. However, this raw sensory

input is not what is perceived as colour: for example, coal in the sunshine

emits a lot more photons than snow during the night, however the former is

perceived as black and the latter is perceived as white. As we have argued

above, the goal of the visual system is no to present the raw sensory input, but

to infer the latent causes that generate it. This involves inferring the material

properties of surrounding objects and surfaces by estimating their reflectance,

which is closer to what corresponds introspectively to the colour of an object.

Reflectance combines with the light source SPD in a non-injective way, which is

an additional source of ambiguity in colour vision. A striking cognitive illusion

relying on non-injectivity can be seen on Fig. 1.9.

In language, the inference problem is to determine the speaker’s intended

meaning, based on the utterance. Language is overflowing with ambiguities

both on the level of words and sentences. For example, consider the newspaper

headline,
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Figure 1.9: Visual illusion relying on perceptual ambiguity and the explaining
away effect. Left, The spectral power distribution (SPD) arriving on our retina
is the same for both eyes of the girl, yet they are typically perceived as different
colours. The SPD arriving from the left side of the image strongly suggests a
strong red light source (e.g. the girl could be standing in front of a projector) or
alternatively a red filter, which explains away why the otherwise cyan coloured
eye appears grey (see Fig. 1.7). Right, the same image is also consistent with
another explanation: the entire left side of the image is illuminated by red
light with the exception of the left eye, which is illuminated by normal light,
revealing that it is the same gray colour as the other one. Seeing the left eye as
cyan suggests that the unconscious inference process concludes that it would
be an unlikely coincidence for the red illumination/filter to exclude the left eye
specifically. The cyan-eyed girl illusion was created by prof. Akiyoshi Kitaoka.

‘Drunk Gets Nine Months in Violin Case’,

which is consistent with two grammatically correct interpretations of ’violin

case’, due to a tendency in natural language for the same word to have multiple

possible meanings (polysemy). Furthermore, grammar itself is ambiguous, as

exemplified by the following sentence [28]:

‘Two cars were reported stolen by the Groveton police yesterday’ .

The sentence can be parsed in multiple ways, associated with different mean-

ings:

1. interpretation: ‘Two cars were (reported stolen) by the Groveton police

yesterday.’

2. interpretation: ‘Two cars were reported (stolen by the Groveton police)

yesterday.’
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There is no difference in the likelihoods,

P (sentence |meaning = 1.) = P (sentence |meaning = 2.),

because either occurrence can be equally well communicated with the sentence.

Encountering these sentences as actual headlines would however be unlikely to

be noticeable for the reader5, due to the unconscious inference process disam-

biguating the sentence through the use of prior expectations: it is uncommon

for the police to steal cars whereas it is common for them to report thefts:

P (meaning = 1.) > P (meaning = 2.). By combining these pieces of knowledge

in the posterior, we find that

P (meaning = 1. | sentence) > P (meaning = 2 | sentence).

Taken together, an important role of semantic memory in perception is

to provide the generative model, which enables the process of unconscious

inference converting sensory data into variables that are relevant for the brain.

Prediction and decision making

Knowledge of the environment as represented by a probabilistic generative

model can be utilised for prediction by conditioning on the observed state of the

world and computing the distributions over variables describing future states

of the environment. Alternatively, the agent can condition not on observed,

but possible states and actions to deduce their consequences. The evaluation

of such what-if scenarios supports planning and decision making. This compu-

tational problem is widely studied in the disciplines of economics, game theory,

control theory and machine learning. In the typical formalisation called rein-

forcement learning, the environment is modelled as a Markov decision process

(MDP)[30] or its counterpart with a partially observed state (POMDP). An

MDP is defined as a tuple (S,A, T ,R) where S is the finite state space, A

is a finite space of possible actions, T is the transition matrix defining the

transition probabilities T a
ss0 = P (s0|s, a) and R is a reward function specify-

ing the average reward for a given state-action pair R(s, a) = E[r|s, a]. The
5However if it later turned out that the less likely interpretation was the correct one,

noticing this could be perceived as funny, which is the basis of the computational account
of humour of Hurley et al. [29]
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Figure 1.10: Action understanding as inverse planning. Red circles identify the
nodes that we condition on, to calculate an estimate for the grey nodes. Figure
based on Baker et al., 2019 [31].

agent’s decisions are captured by positing a policy that it follows, formalised

as the policy function ⇡(s, a) = P (a|s). Provided that an agent has learned

the correct model of the environment, it can ‘solve’ the MDP by determining

the optimal policy ⇡
⇤ for which the expected return is maximal. This can be

thought of as generating an infinite amount of hypothetical what-if situations

for both states of the world and actions taken, and evaluating the consequent

outcomes. The principle of rational action can then be formalised as the agent

following the policy that led to the best outcomes on average, based on its

model of the environment (Fig. 1.10).

Similarly to the case of vision and linguistics, having a generative model

also helps in inverse inference tasks. We have seen how the forward model com-

bines an agent’s beliefs (estimate of MDP and state) with their goals (reward

function) to plan actions according to the principle of rationality. What the

inverse model enables us to do is to infer an agent’s goals given its actions and

beliefs about the world, by integrating the likelihood of the observed actions

with the prior over goals, which may underlie humans’ intuitive psychology,

also termed a ‘theory of mind ’ (Fig. 1.10) [31].

1.2.3 Learning a model of the environment

We have seen that semantic memory, in the form of a probabilistic gen-

erative model, can effectively support cognitive functions such as perception,

prediction and decision making. But how does the brain build such a model

of the world based on sensory experience? Sensory experience is difficult to

interpret even if the generative model is known due to noise, ambiguity and
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resource constraints. Having to also learn the model itself introduces an ad-

ditional challenge, the problem of induction. Understanding how experiences

can be generalised into theories have occupied philosophers of science at least

since Hume [32], through Quine, Carnap and Goodman. However, recently

these issues have entered the domain of engineering and science as practical

difficulties in constructing intelligent artificial agents, where it is commonly

known as the problem of generalisation.

A famous illustration of this problem is learning concepts: If we have ob-

served a white swan, and have never observed any black swans, can we justify

the statement that all swans are white? What if we have observed a huge

amount of white swans and not a single black one [33]? In other words, given

a variety of hypotheses about how the world works that are all consistent with

observations to date, which one should we choose? The Bayesian approach

recognises the similarity of this problem to that of ambiguity in perception

and applies the same solution. That is, it views the problem of model induc-

tion as the inference of an additional, higher level latent variable that con-

tributes to how the world generates sensory experience. Model inference can

be further decomposed into a hierarchy of additional levels such as parameters,

structure, structural form and hyperparameters, introducing hypothesis spaces

over hypothesis spaces with priors over priors, each level defining a probability

distribution over the variables below it [34].

Structure learning in compositional hypothesis spaces

In order to see how hierarchical Bayesian inference can be applied to a

concrete problem, consider the example of learning how to make coffee with a

new device that one has no prior experience with. Each row in Fig. 1.11, left,

summarises observations in a concrete experience of making coffee and tasting

it. The variables shown in each column are the results of perception, already

incorporating the first step of probabilistic inference in the model. One can

describe how each variable such as the type of beans, grind setting or water

quality affects the taste using a parametric model and based on the experiences

D, the parameters can be tuned to predict the taste for new settings accurately

by computing P (✓|D). However, this parameter estimation process relies on

having already identified which variables are potentially relevant, as well as
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which of these variables affect which others, for example that the clothes one

is wearing are unlikely to have a strong influence on the taste (Fig. 1.11, right).

This additional task, called structure learning, can be handled by extending

the model with an additional level of hidden variables corresponding to model

structure S, so that the generative model becomes P (D|✓, S)P (✓|S)P (S).

Figure 1.11: Causal structure learning. Left, Summary of coffee-making exper-
iments, with each row showing the observed values of variables (some variables
omitted for brevity). Right, Example of a causal model illustrating the rela-
tionships between variables and their effect on the quality of the drink. A
single estimation sub-problem is highlighted, that of estimating the parameter
✓ describing the effect of pressure on coffee quality.

Structure learning then relies on evaluating candidate model structures

(Fig. 1.12) by computing the posterior over structures

P (S|D) /
Z

P (D|✓, S)P (✓|S)P (S)d✓.

The main challenge in calculating this posterior is that the space of poten-

tial model structures becomes vast as the number of variables increases. If the

model allows for the addition of latent variables to represent hidden structure

in the generative process, then the space of model structures is infinite or open-

ended. Furthermore, the space is discrete and the likelihood of each candidate

must be evaluated separately, including the marginalisation over parameters.

To deal with open-ended model spaces, one approach is to exploit composi-

tionality by defining building blocks and a set of rules on how they can be

combined infinitely to produce models of increasing complexity. The building

blocks can be for example graphs [35], matrices [36] or programming language

primitives [37, 38], and the rules often take the form of generative grammars

that define possible replacements of elements of the model with more complex
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Figure 1.12: Samples of candidate model structures in the coffee making exam-
ple. Each graph is created by adding or removing edges to and from a simpler
candidate structure. The size of the hypothesis space scales combinatorially
with the number of variables.

combinations of the primitives.

Kemp et al. [35] uses graphs and a graph growing grammar for expressing

a wide range of structural forms such as trees, linear orders, multidimensional

spaces, rings, dominance hierarchies or cliques (Fig. 1.13B&D). These forms

F are introduced as an additional level in the hierarchy above the inference of

the model structure S and they perform inference over both levels

P (S, F |D) /
Z

P (D|✓, S)P (✓|S)P (S|F )P (F )d✓.

Given data from natural domains, their algorithm discovers sensible structures,

such as a tree structure for animal features, linear structure for US Supreme

court judge voting patterns, ring structure for colour similarities and a cylin-

drical structure for proximities of cities around the globe. Their algorithm also

exhibits developmental shifts in model structure as observations are increased,

reminiscent of similar shift in human development in the understanding of

categories. Grosse et al. [36] define a context-free grammar on matrix decom-

positions that can infer latent components and estimate predictive likelihood

for nearly 2500 structures and unifies a variety of pre-existing unsupervised

learning methods (Fig. 1.13A). Starting from a simple Gaussian matrix, they

perform greedy search over the candidate structures produced by the gram-

mar (Fig. 1.13C), using a simpler proxy for the marginal likelihood for scoring

them. Their algorithm successfully infers structures in a wide range of natural

datasets, including image patches, motion capture data, 20 Questions answers,
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Figure 1.13: Compositional hypothesis spaces. A, Exploring the space of model
structures through composition of matrices gives rise to previously defined
statistical models from the machine learning literature in the framework of
Grosse et al. [36]. Arrows indicate models that can be reached by applying
a single production rule, but only a subset of possible steps are shown. B,
Model structures that can be discovered given a matrix of binary features in
the method of Kemp et al. [35]. C,D, Generative grammars for combining
primitives leading to A and B respectively. A, C reprinted from Grosse et al.
[36], B, D reprinted from Kemp et al. [35].

and U.S. Senate votes.

Open-ended model spaces can also be constructed by directly exploiting

compositionality in the same manner that is used by human programmers

to navigate the space of algorithms: that is by constructing programs from

the primitive instructions of a general purpose programming language. This

approach frames learning as program induction, that is, based on observing

the outputs of a program, the task is to infer what could be the code that

produced them. Viewing learning as program induction aligns directly with

representing knowledge as probabilistic programs that we have introduced in

section 1.4, as well as theoretical approaches for defining universal learning

agents [39]. It has also been argued by Rule et al. [40] that it might be fruitful

to extend the analogy with additional techniques employed by programmers,

such as adding and extracting functions, debugging, profiling, refactoring, writ-

ing libraries and inventing domain specific languages. As concrete examples,
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Piantadosi et al. [37] have used a restricted set of primitives to model the ac-

quisition of the concept of natural numbers by children over the course of their

development, based on word statistics from child-directed speech (CHILDES

dataset). Ellis et al. [38] built a general purpose program induction algorithm

in a wide range of domains such as list processing, text editing, drawing of sim-

ple shapes, building block towers, symbolic regression and equation discovery.

Their algorithm, called DreamCoder, is capable of constructing domain spe-

cific libraries and using its previously defined abstractions as building blocks

for future induction tasks. This enables the algorithm to successfully rediscover

fundamental building blocks of functional programming, vector algebra, and

classical physics, including Newton’s and Coulomb’s laws.

Common in these approaches that explore a vast space of composition-

ally defined model structures is that they proceed from simpler models to

more complex ones as more data is observed. This progression over models

relies critically on a feature of Bayesian model selection called the automatic

Occam’s razor, which automatically trades off between complexity and model

fit, protecting against selecting overly complex models. In the following sec-

tion, we explore how this feature of Bayesian model selection emerges in the

computation of the model posterior.

Automatic Occam’s razor

Popper observed that there is a fundamental difference between the way

we can confirm or falsify hypotheses. He noted that no amount of evidence

supporting a hypothesis can definitively prove it, but a single counterexample

can disprove it. For example, while even an immense amount of white swans

can’t prove that all swans must be white, the observation of even one black

swan falsifies it. He concluded that we should be suspicious of theories that

are not falsifiable [33]. This preference for falsifiability is reflected in Bayesian

model selection, known as the automatic Occam’s razor effect [41]. The auto-

matic Occam’s razor penalises models that can accommodate a wide range of

outcomes, relative to models that make more precise predictions.

To understand how Bayesian inference incorporates the automatic Occam’s
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razor, consider the posterior over models (M) as a dataset (D) is observed:

P (M |D) =
P (D|M)P (M)P
M P (D|M)P (M)

.

The posterior over models gives the degree of belief that the agent assigns

to each candidate hypothesis. If the agent has no prior preference for any

of the considered models, that is to say it uses a uniform prior P (M), then

the normalised model likelihood P (D|M) is equivalent to the model posterior.

Therefore, we focus on this quantity, also called the marginal likelihood high-

lighting that it can be computed by marginalising over the parameter values

✓:
P (D|M) =

Z
P (D|✓,M)P (✓|M)d✓. (1.2)

The quantity that evaluates how well a given model can fit the data is the like-

lihood P (D|✓,M), which is commonly used for selecting the right parameters

in statistical inference and machine learning (maximum likelihood estimation).

However, it has a critical problem: models differ in their flexibility, and certain

models and can achieve high likelihood on almost any data set; in the words

of John von Neumann, ‘with four parameters I can fit an elephant, and with

five I can make him wiggle his trunk.’ [42]. This problem is analogous to the

problem of falsifiability.

If we rely on Bayesian model selection and compare the marginal likelihoods

instead of the standard likelihood, then as we noted in Eq. 1.2, we also have to

marginalise over possible parameter settings. One way to interpret the effect

of this marginalisation is to rewrite Eq. 1.2 as a Monte Carlo integral, where

we take the average likelihood over samples from the parameter priors:

P (D|M) = lim
N!1

1

N

NX

✓i⇠P (✓|M)

P (D|✓,M)

This way of expressing the marginal likelihood makes it clear that a model

will be preferred according to this measure if it predicts the dataset not with

fine-tuned, but with randomly sampled parameters, and consequently, complex

models that rely on a precise calibration of their parameters are penalised. A

different way to look at the same effect is to observe that complex models, by

virtue of being consistent with many different observations, spread their predic-

30



1. Introduction

tive probability over a large volume in the space of possible data sets. Since the

predictive distribution is normalised, the absolute value of such widely spread

distributions at any given data set has to be low (Fig. 1.14). Consequently,

given a simple model with strong, easily falsifiable predictions and a complex

model that can explain almost anything with high precision, the marginal like-

lihood is going to prefer the simpler model even if it is slightly less successful

in explaining the data, instantiating the automatic Occam’s razor. Note that

frequently used model selection criteria in statistics such as AIC and BIC can

be derived as approximations of Bayesian model selection under simplifying

assumptions.

all possible datasets of size T

D� 

P(D
| M

)

too simple

‘just right’
too complex

Figure 1.14: The automatic Occam’s razor. Model likelihoods over all possible
data sets for three models that spread their predictive probability mass in
different ways. The blue model can fit many kinds of data, but due to the
normalisation constraint this also means that it has to assign lower probability
to a given data set than a simple model (green). A given dataset is indicated
with the dotted line - we can see that the model likelihood prefers a model
that is neither too simple, nor unnecessarily complex. Figure adapted from
Rasmussen et al. [43].

Online vs batch learning

A further aspect of learning to consider is that, in contrast to many machine

learning settings, the brain does not have access to a lifetime of experiences for

training. Instead, it has to incorporate new observations into its model estimate

as they arrive. In machine learning, this former setting is called batch learning,

while the latter is called online learning. In the batch learning problem the task

is to learn a model from some training set D = {x1, x2, ..., xN} and use this

model on a test set. In the Bayesian inference framework this can be viewed
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as the inference of the model parameters after observing training set,

P (✓|D) =
P (D|✓)P (✓)P
✓ P (D|✓)P (✓)

,

and (optionally) choosing the model that maximises the posterior over the

parameters (MAP estimate):

✓̂ = argmax
✓

P (✓|D)

In contrast, in an online learning scenario the data points xti 2 D arrive

individually in succession, and the agent has to refine its predictions after each

point. This iterative refinement is ideally regulated by an update rule that

depends only on the estimator from the previous time step and the current

data point. Formalising this in the Bayesian framework, the posterior after the

first data point Dt1 = {xt1} is

P (✓|xt1) /
P (xt1|✓)P (✓)P
✓ P (xt1|✓)P (✓)

Calculating the joint posterior for D = (xt1, xt2), we may notice that the

previous posterior appears in the result:

P (✓|xt1, xt2) =
P (xt2|✓)

previous posteriorz }| {
P (xt1|✓)P (✓)P

✓ P (xt2|✓)P (xt1|✓)P (✓)
=

P (xt2|✓)P (✓|xt1)P
✓ P (xt2|✓)P (✓|xt1)

Intuitively, this means that we can view the previously calculated posterior as

the agent’s prior in the inference of the subsequent posterior (Fig. 1.15):

Pt+1(✓) = P (✓|Dt) = Pt(✓|xt) =
P (xt|✓)Pt(✓)P
✓ P (xt|✓)Pt(✓)

(1.3)

1.3 Resource constraints

Bayesian inference provides a normative framework for addressing many of

the challenges that the brain faces, focusing on a principled treatment of un-

certainty and ambiguity. However, it does not address a similarly fundamental

challenge: the severe resource constraints under which the brain must operate.
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Figure 1.15: Comparison of Bayesian inference for an online learning and a
batch learning scenario. Left: In batch learning, all observations are available
at the same time and the posterior can be computed in a single step. Right:
In online learning, at each observation, the posterior incorporates all prior
knowledge from preceding observations, and this posterior then acts as the
prior in the next inference step.

These constraints come in various forms, such as constraints on time available

for computation, as well as constraints on the physical size of the brain due in

part to the metabolic costs of maintaining and operating it. Bayesian inference,

as a computational level framework for dealing with uncertain knowledge, as-

sumes boundless computational power and performing the computations that

it prescribes is often not feasible. Consequently, a large variety of approximate

methods have been developed and one goal of this section is to offer a very

brief overview of a selection of these that I rely on in the rest of the thesis.

I note however, that in my opinion, these resource constraints are similarly

fundamental as the issue of ambiguity, and therefore would merit an integra-

tion into the design of the normative framework for understanding the brain as

opposed to the post-hoc remedies that these approximation methods provide.

Perhaps the most influential approach for engaging with resource con-

straints in a principled way in computational neuroscience and cognitive sci-

ence is information theory. It formalises information, an abstract measure of

representational capacity, and provides a normative framework both for com-

pressing information losslessly as well as discarding it in a principled manner

33



1. Introduction

as representation resources are reduced. Additionally, efficient storage of past

observations is a fundamental aspect of the computational problem of memory.

Therefore I briefly introduce information theory in this section, with further

details in chapter 3 which specifically relies on the theory of lossy compression,

called rate distortion theory.

1.3.1 Approximate Bayesian inference

In this section, I provide a brief overview of two commonly used approx-

imate Bayesian inference approaches: Monte Carlo and variational inference.

Monte Carlo methods use sample-based representations of probability distri-

butions, which become more accurate as the number of samples increases.

Variational methods, on the other hand, assume simpler parametric forms for

the distributions to be approximated and optimise these parameters to reduce

the deviation from the true solution.

Monte Carlo approximations

Instead of representing p(✓) directly as a function, we can represent it as a

suitably large set of i.i.d. samples

p(✓) ⇡ 1

N

X

i

�✓(i) = {✓(i) ⇠ p}N (1.4)

where �✓(i) is a point mass indicator function that takes the value 1 if ✓ = ✓
(i)

and otherwise 0 and a ⇡ bN denotes that a = limN!1 bN (asymptotically

equal) and E[bN ] = a (unbiased). Intuitively, the RHS of Eq. 1.4 defines a his-

togram that tends to p(✓) as the number of samples is increased. Furthermore,

we can use the samples to approximate the expected value of any function over

p(✓) by taking the average of the function over the samples

Ep[f ] =

Z
f(✓)p(✓)d✓ ⇡ 1

n

X

{✓(i)⇠p}

f(✓(i)) (1.5)

The target of these approximations in Bayesian inference is usually the pos-

terior distribution, however sampling directly from the posterior is often not

tractable. One of several approaches to this problem called importance sam-
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pling is to take samples from a simpler distribution q(✓) and correct for the

deviation from p(✓) with suitably chosen w
(i):

p(✓) ⇡ {w(i)
, ✓

(i) ⇠ q} (1.6)

A general way to choose the proposal distribution that is well adapted to

an online learning setting is the Sequential Monte Carlo (SMC) method, also

called particle filter ing (PF). In SMC, we use the prior for obtaining the sam-

ples (or particles) and then correct the deviations from the posterior updated

with a single additional observation. Interestingly, in this case, the required

weights turn out to be the likelihoods of each sample on the newly observed

data point, normalised such that the weights sum to unity. Using this weighted

sample representation of the updated posterior as the new prior, we continue

recursive online updates over the entire dataset as in Eq. 1.3.

pt+1(✓) ⇡ {Z�1
pt(xt|✓(i)), ✓(i) ⇠ pt(✓)} (1.7)

One of the main issues with SMC/PF is sample diversity: after a large num-

ber of updates, the weights of most samples tend to zero. A frequently used mit-

igation strategy is to periodically resample the representation using the weights

as the parameters of a multinomial distribution {✓(i) ⇠Multinomial({w(i)})}

[44]. This simplest variant of a resampling step makes copies successful parti-

cles and removes particles with low weights, and it can be seen as a method for

converting a weighted sample representation of a distribution into a standard

sample representation format (Fig. 1.16).

SMC/PF was originally developed for estimating the posteriors of state

variables such as the latent variable in a hidden Markov model. In such models,

the latent dynamics increases diversity by separating the resampled copies of

particles. However, if we are computing a posterior over a static parameter, the

original prior samples never change their locations, only their weights. This can

be mitigated by introducing artificial dynamics, or combining with different

sampling methods such as Markov Chain Monte Carlo (MCMC), although

such solutions are technically complex and their convergence properties are

not extensively studied [45].

The second important drawback to standard SMC/PF methods is that
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Figure 1.16: Schematic illustration of sequential importance sampling. Each
circle represents a weighted sample, where the center of the circle represents
the sample value and the radius of the circle is proportional to the sample’s
weight. First, the learner generates uniformly weighted samples from the prior
(first row). Then, it observes the point x0 (second row) and weights the prior
samples using the likelihood, resulting in a weighted sample representation of
the posterior (third row). The posterior can then be converted into an un-
weighted representation through resampling (fourth row) and this can serve as
the prior for incorporating a subsequent observation.

they do not scale well to high dimensions. An efficient mitigation technique is

available when a subset of these dimensions can be treated analytically then

each particle can carry an associated analytical distribution and the effective

dimension of the particle filter can be reduced. This method is called the Rao-

Blackwellisation of the sampler [46].

Variational inference

Variational inference (VI) algorithms constitute the main alternative

to Monte Carlo methods for performing approximate Bayesian inference.

Variational methods use a parametric distribution family q�(✓) and find the

element of the parametric family that lies closest to the true solution in some

measure (Fig. 1.17). The most commonly used measure is the KL divergence,

which we introduce in section 1.3.2, resulting in the objective

argmin� KL(q�(✓|x) || p(✓|x)). (1.8)

Since this form of the objective contains the intractable posterior, it is not

directly applicable. However, using the definition for the KL divergence and

reordering the terms, we can get the following expression:

Eq�(✓|x)[log p(x, ✓)� log q�(✓|x)] = �KL(q�(✓|x)||p(✓|x)) + log p(x),

The LHS of the equation is called the evidence lower bound (ELBO) or the
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Figure 1.17: Schematic illustration of variational inference. Left, a more com-
plex distribution (black line) is approximated using a simpler, parametric dis-
tribution (green dashed line). Right, the posterior p(z|x) defines a point in
the space of all probability distributions P . The approximating parametric
family of distributions Q define a small subspace within P (emoji notation
from Huszár, 2017 [47]). The goal of VI is to find the point q(z|�⇤) in Q that
lies closest to the true posterior by optimising �.

negative variational free energy. Since the KL divergence must be positive, the

ELBO is a lower bound on the log marginal likelihood log p(x). Also visible

from this equation, maximising the ELBO is equivalent to minimising the KL

divergence on the RHS, allowing us to optimise q(✓|x) without having access

to the true posterior.

Amortised inference

The idea of amortising Bayesian inference has recently been proposed as

an additional idea for mitigating resource constraints in human cognition [48].

In general, amortisation trades off memory resources to save on computational

costs by storing the results of previous computations in order to make future

ones more efficient [49]. For example, in Monte Carlo methods, the recursive

sequential updates we have introduced in Eq. 1.7 reuse the samples from the

previous step and therefore can be seen as a form of amortisation.

Another successful variant, deep amortised VI, combines the ideas of amor-

tisation and VI with advances in deep learning. In this approach, we perform

variational inference to compute the posterior over state variables on data

from a training set. At the same time, we train a deep neural network on

these data-posterior pairs, treating the mapping from data point to posterior

f : xt 7! q(z|xt) as a supervised learning problem. In this view, the role of the

neural network is to provide a parametric function family f� with good gener-
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alisation properties. After training, the output of the network offers an easy to

compute, amortised approximation of the posterior for novel data points. This

approach is adopted in one of the most widely used generative models called

variational autoencoders and its variants, which we build heavily on in our

formalisation of the interactions of the episodic an semantic memory systems.

For a brief introduction to variational autoencoders see section 3.1.3.

1.3.2 Information theory

From the perspective of an agent, information from the environment means

that the environment produces one of a certain number of possible alternative

observations that the agent may expect. The quantity of information that an

agent receives depends both on the number of alternatives and to what degree

the agent expects the occurrence of the observation. If an observation x has

a probability of Pagent(x) = 1, it contains no new information for the agent

as it is certain to occur. Conversely, the lower the probability of the message,

the greater the information it holds, i.e. the more surprising it is. A second,

mathematical desideratum for information is that it is additive for independent

sources. For example for two independent sources X, Y the information content

should be the sum of their individual information contents: I(x [ y) = I(x) +

I(y). The simplest way to satisfy these two intuitions is to define information

content of an outcome I(x) as [50]:

I(x) = log
1

P (x)

measured (depending on the base of the logarithm) in bits or nats. The uncer-

tainty inherent in a particular information source is quantified by the entropy,

which is the average information content or average surprise of the source.

H(x) = EP [I(x)] = �
Z

R
P (x) logP (x) dx,

measured in the same units as information content. Entropy is maximal

if all outcomes are equally probable. If an agent has a model of the world Q

that differs from the true generative process P and therefore leads to incorrect

expectations, the average surprise that the agent experiences is quantified by
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the cross entropy :

H⇥(P,Q) = EP [IQ(x)] = �
Z

R
P (x)log(Q(x))dx.

In the case of P = Q, this is equal to the entropy of P . We can compute

how much of the uncertainty is a consequence of using the wrong model by

subtracting the inherent uncertainty of P , leading to the concept of relative

entropy or Kullback-Leibler divergence:

KL(P,Q) = H⇥(P,Q)�H(P ) = EP


log

P (x)

Q(x)

�
, (1.9)

It can be easily seen that KL(P,Q) = 0 , P = Q and Gibbs’ inequal-

ity guarantees that KL(P,Q) � 0, making it a semi-quasimetric. Hence, it

can be thought of a kind of distance in the space of probability distribu-

tions, keeping in mind that it is not a true metric as it is neither symmet-

ric (KL(P,Q) 6= KL(Q,P )) nor sub-additive. The KL divergence is a central

quantity in machine learning and statistics. For example, it can be shown that

the maximum likelihood method in statistics minimises the KL divergence

between the observed empirical distribution and the predictive distribution,

argmin
✓

KL [Pdata(x) , P✓(x) ]  ! argmax
✓

logP (x|✓)

as well as provides the optimisation objective for variational inference, see

section 1.3.1 and section 3.1.3.

A further important quantity is mutual information, I(X, Y ), which mea-

sures how much an agent learns about random variable X from observing

random variable Y

I(X, Y ) = H(X)�H(X|Y ).

Mutual information (MI) can be seen as a measure of the dependence between

the two variables, and it can also be expressed as the KL divergence between

the joint distribution of X, Y and the product of the marginals,

I(X, Y ) = KL[P (X, Y ) ||P (X)P (Y )]

which is zero if and only if X and Y are independent. MI is a central quantity

in the information bottleneck method [51] that we rely on for formalising how
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Figure 1.18: Schematic illustration of lossless compression and the Kraft-
McMillan theorem. In the middle column, we see possible binary inputs from
the source, with the relative frequency of each input shown as a histogram on
the left. The coding function c maps each input to a binary code, shown in the
right column. The underlying idea in lossless compression is that the coding
function maps short code words to more frequent inputs.

semantic memory supports the efficient storage of episodic memories in chapter

3.

Information theory and memory

Mutual information can also be used to capture the notion of predictive

information, that is the information in past observations xP = x0:t that is

relevant with regards to predicting future sensory input xF = xt+1:T [52]. It

can be shown that if the environment is a generative process P (x|�) that the

agent models with Q(x|✓), then the information that the agent has regarding

future observations is exactly the information that its model contains regarding

the true generative process [9], that is,

lim
T!1

Ipred = lim
T!1

I(xP ,xF ) = I(✓,�)

This lends formal support to our intuitive argument in the introduction that

if the function of memory is to support predictions, then the brain should

construct an approximation of the generative process that produces its obser-

vations.

A second connection between information theory and memory can be drawn

if we consider that memory has to store past experiences. Efficient storage

entails an encoding of observations into a shorter form, and according to

Shannon’s source coding theorem the fundamental limit to such compressed
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description of experiences is the entropy of the information source that is to be

encoded. Specifically, the theorem states that if we want to encode a random

variable X taking values from AX with entropy H(x) using an alphabet A,

there exists an optimal, uniquely decodable code for which the expected length

of code words is bounded by the entropy:

H(x)

log |A|  EP [|c(x)|] <
H(x)

log |A| + 1,

where an encoding is a mapping c : A⇤
x ! A⇤, with ⇤ being the Kleene-star

A⇤ =
S

i2N Ai. The idea underlying a compressed description of observations

is to attach shorter codes to likely observations, at the cost of lengthening

the description of unlikely ones. The mapping between code lengths and the

probability distribution of the information source is established by the Kraft-

McMillan theorem, stating that analogously to the normalisation constraint

on probabilities, the sum of code word lengths cannot be arbitrarily small and

for uniquely decodable codes, their sum has to satisfy

nX

i=1

✓
1

|A|

◆`i

 1,

where li = |c(xi)| is the length of the code for xi in bits. Intuitively, there

are exponentially more long words than short words, and so the cost of using

a code word of length li scales as |A|�li . Therefore if we want to optimally

allocate the code word budget, we should choose them such that P (xi) = |A|�li

(Fig. 1.18). In this sense, any lossless compression algorithm can be seen as

representing an implicit probability distribution, and conversely, the brain has

to have at least an implicit probability distribution over possible experiences if

it is to use its memory capacity efficiently. An interesting way to think of this is

that the probabilistic model in semantic memory generates a language (coding

scheme) to which raw sensory data is translated, enabling concise descriptions

of past, present and possible future (or even imaginary) states of the world.

Note that the relevant compression regime for the brain is more likely to be the

lossy one, which requires an extension of the framework to handle distortions.

The application of this extended framework, called rate distortion theory, to

human memory, is the main subject of chapter 3.
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1.4 Kinds of memories

While there is no universally agreed upon definition for what constitutes

a memory system and how to differentiate them, it is widely recognised that

there are multiple memory systems. This understanding is largely derived from

observations of patients with various memory impairments, such as amnesia,

who exhibit selective losses of certain memory-related cognitive abilities with-

out affecting others. In this section, I will present a commonly accepted clas-

sification of memory systems, based on the framework outlined in [53], which

serves as a useful reference point.

Sensory memory retains sensory information for a short amount of time af-

ter the stimulus has ceased. This can be seen in the classic example of a sparkler

in a dark room appearing to leave a trail, which quickly disappears, demon-

strating the limited time frame in which this type of memory operates. This

ability to retain sensations is believed to exist across all sensory modalities,

including hearing (echoic memory) and touch (haptic memory). The capacity

to retain small amounts of information for just a few seconds is referred to as

short-term memory. This is an active form of memory, which can be sustained

by conscious effort, such as repeating a phone number repeatedly to remember

it. Short-term memory is often seen as part of a larger system, referred to as

working memory, which acts like a mental scratchpad for thinking and reason-

ing. Long-term memory, on the other hand, refers to the cognitive processes

that allow for the storage of information over longer periods of time, including

hours, days, years, and even decades. It is divided into two types: declarative

(or explicit) and non-declarative (or implicit) memory.

Implicit memory refers to knowledge that is not easily accessible through

conscious thought and is tied to specific actions, such as the skill of riding a

bike or a conditioned response of blinking in response to a tone after it has been

consistently followed by an air puff. Performance in these kinds of tasks can

be improved with practice even in amnesic patients. In contrast, declarative

memory encompasses information that can be consciously retrieved, such as

general knowledge about the world or personal experiences.

Explicit memory is further divided into two categories: semantic and

episodic memory. Semantic memory, as we have discussed, refers to general
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knowledge of the world such as concepts or the meanings of words. It also

includes integrated chunks of knowledge termed schemas, exemplified by a

knowledge of how a typical restaurant visit plays out (schemas that describe

typical events are called scripts), how to book a theater seat or what a typi-

cal home consists of (frames, which store information about objects and their

properties). Episodic memory, on the other hand, relates to our capacity to

recall unique and personal experiences. One notable aspect of episodic mem-

ory is what Tulving refers to as ‘mental time travel’, the subjective feeling of

reliving the remembered experience. The distinction between episodic and se-

mantic memory is often made based on the subjective feeling of ‘remembering’

versus ‘knowing’.

1.5 Outline

In this thesis, I focus on a normative account of long-term memory, and

specifically investigating the interactions between the semantic and episodic

memory systems. While a generative model of the environment has been shown

to be crucial for adapting to environmental demands, the rationale behind an

episodic memory system is less clear. In Chapter 2, I aim to demonstrate

that an episodic memory system is necessary for a learning agent and how it

complements the semantic memory system. This chapter is based on Nagy &

Orban (2016) [54]. In Chapter 3, I examine the opposite perspective, inves-

tigating how semantic memory can aid the functioning of episodic memory.

Specifically, my goal is to evaluate whether the generative model stored in se-

mantic memory can serve as the basis for the effective compression of sensory

experience. However, such lossy compression inevitably introduces distortions

in reconstruction, and I also compare these distortions with the artefacts that

result from the application of traditional compression algorithms in computer

systems and systematic memory distortions identified in prior human exper-

iments. This chapter is based on Nagy et al. (2020) [55], also incorporating

results from Nagy et al (2019) [56] and Fráter & Nagy et al. (2022) [57].

In Chapter 4, my goal is to extend the prior computational and algorithmic

level analyses to the question of how these algorithms can be implemented in

the brain and artificial neural networks. In the first of the final set of studies, we
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investigate whether the semantic compression idea can be implemented using

hierarchical generative models and contrast qualitative features of neural ac-

tivities in the model with neural recordings from the visual cortex of macaques.

This section is based on results published in Bányai & Nagy et al. (2019) [58].

In the final study, I revisit the sensitivity of both human and machine learning

to the order in which observations are presented, which were analysed in the

first study. The goal is to examine whether task representations can be main-

tained separately in the same neural network, such that the artificial neural

network shows similar robustness to blocked training as humans. This final

section is based on work done during an internship that led to the publication

Flesch & Nagy (2023) [59].
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Chapter 2

What use is an episodic memory?

In a complex, structured environment that is capable of providing a prac-

tically infinite variety of possible experiences, storing them in all their detail

would take a prohibitive amount of memory resources and would be useless in

responding to novel situations. It is more beneficial for an learning agent to

extract the structure of the world into a concise model, which enables both

compression and generalisation, and store this model instead of the obser-

vations. But then what is the benefit of devoting precious mental resources

to encoding inconsequential contingencies by storing rich snapshots of actual

experience, that is, what use is episodic memory?

Here, we argue that online learning in open-ended hypothesis spaces

(Section 1.2.3) under realistic resource constraints — similar to what the hu-

man brain faces — presents a computational challenge that makes such a

memory system necessary. In an online learning scenario, observations arrive

sequentially and predictions have to be continuously updated. Iterative up-

dates of a particular model’s parameters do not require storing the data, since

it is sufficient to retain only the information relevant to the specification of the

parameters. However, if the structural form of the model is a priori unknown

[35], then only a subset of candidate models can be tracked at any given time,

since the memory cost of retaining even such compressed statistics becomes

prohibitive for an infinite set of models. The inevitable information loss result-

ing from this restriction presents the brain with a delicate problem: relevance

judgements, that is, decisions about what to forget and what to remember can

only be based on the currently tracked models. At the same time, the initial
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guess for which models these should be is likely to be wrong because the ini-

tial data will only warrant an overly simple model and because it might be

misleading about the correct structure and form. Introducing such a bias in

the interpretation of new experiences towards the wrong models means that

statistical power required for model updating cannot accumulate, since the

evidence for alternative models and the information needed for fitting those

models will often be deemed irrelevant and discarded, preventing the discovery

of the correct representation.

We propose that an episodic memory can alleviate the fundamental problem

of online learning described above, by retaining a selected subset of samples.

This mini-batch allows evidence for a novel model to accumulate by retaining

the contingent details of observations irrespective of how relevant they appear

under the current model. We also argue that to take full advantage of episodic

memory, its contents should be chosen selectively, so that the combination

of episodic and semantic memories provide an efficient representation of the

observations.

We are aware of two prior attempts to provide a normative explanation

for an episodic memory based on computational principles. The complemen-

tary learning systems account of McClelland et al. (1995) [60] suggests that

a fast, hippocampal learning system is required in order to avoid interference

with knowledge stored in a neocortical system where learning occurs via slow

changes of synaptic connectivity in a network of neurons. Catastrophic inter-

ference can be seen as a special case of the detrimental consequences of an

inability to maintain a lossless representation of observations during learn-

ing, but in contrast to our treatment, the complementary learning systems

approach lacks a normative framework and only concerns parameter estima-

tion within a single model. Lengyel & Dayan (2009) argue that using the data

samples directly for control is advantageous at the early stages of learning in

a new environment. A different but related question about how the combina-

tion of semantic and episodic memories can be used to optimise reconstruction

is explored by Hemmer et al. [11]. Mahr & Csibra (2017) [62] ask a similar

question and locate the function of episodic memory in its role in human com-

munication, however they concentrate specifically on its metarepresentational

structure as distinguished from its representational contents. In contrast, our
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work focuses on the latter, specifically on why a large set of irrelevant features

are retained within the memory trace, which Mahr and Csibra refer to as event

memory.

While this study is intended primarily as a normative argument for the ex-

istence of a cognitive system, the problem explored here is intimately related

to the efforts in machine learning to handle the problem of online Bayesian

model selection in arbitrarily complex model spaces. There are numerous pro-

posals for methods that deal with online model selection or model selection

in infinite model-spaces [36] separately. Recently, there have been attempts to

tackle both challenges at once in a similar setting, but these are concerned

with a restricted hypothesis space over possible model forms, such as mixture

models [63, 64, 65]. Methods that are specific to a given model form have the

potential to be vastly more efficient within their domain, but we are striving

to find the principles for a general purpose computational architecture that

is flexible enough to accommodate uncertainty in the structural form of the

model [35]. To the best of our knowledge, such a scenario has not yet been

explored.

2.1 Learning paradigm

In this study we aim to study how the computational problem of learning

shapes the architecture and dynamics of long-term memory. We assume that

the main goal of human learning is the acquisition of a suitable representation

of the world and propose that this learning process is characterised by the

following fundamental properties: i) it is incremental; ii) it requires an open-

ended hypothesis space which incorporates not only an arbitrary amount of

complexity but also enables the discovery of the appropriate model form; and

iii) it is subject to computational constraints, most notably a limited amount

of memory.

Our main argument is agnostic to the choice of learning method, but we are

adopting the Bayesian inference framework. This framework provides us with a

consistent, general and arguably elegant solution for dealing with uncertainty

during learning and is central to many state-of-the-art advances in machine

learning [66] while simultaneously being able to capture a large body of knowl-
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edge concerning the acquisition of abstract knowledge in humans [34, 67]. In

this framework the problem of learning can be formalised as the continual re-

finement and updating of a probabilistic generative model, where information

about unobservable or currently not observed variables, parameters and can-

didate world structures can all be expressed as probability distributions over

latent variables (Section 1.2.3).

In our treatment the memory constraints are formalised such that after

the model has been updated, by default, the observation is discarded and only

the sufficient statistics for the best performing model is kept. The two main

challenges introduced by these constraints are that the learner needs to both:

i) assess the plausibility and ii) approximate the right parameter settings of

alternative models based solely on the sufficient statistics of the tracked model,

without having access to the data.

We set out with an example learning problem that can demonstrate both

the challenges and the power of the proposed approach: a mixture of Gaussians

model (MoG) has the benefit of showing non-trivial model-learning dynamics

while also providing an opportunity for analytical treatment. Mixture models

are also frequently used as cognitive models of human category learning [68].

We use a version where model selection corresponds to determining the correct

number of mixture components based solely on the data; parameter learning

consists of finding the means for the components; while mixture weights and

variance of mixture components are assumed to be fixed and known. Although

a more flexible model would provide richer dynamics, the main challenges

stated earlier can be clearly demonstrated on this simplified model.

The rest of the section is structured as follows: first, we show how incremen-

tal Bayesian inference works in a setting without resource constraints; next,

we introduce a learning agent that only has access to a semantic memory and

demonstrate that it has a propensity to discard the information that would

enable model change; finally, we show that the introduction of an episodic

memory substantially mitigates this problem.
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Figure 2.1: Illustration of model learning on a MoG model. A, The goal of
learning is the estimation of the probability distribution of the data (left panel,

dashed grey line) from a limited sample (asterisks, n = 4). Inference in a given
model yields a posterior probability distribution over model parameters (upper

right panel). The model assumes two mixture components (k = 2). Based on
the posterior, the predictive posterior distribution (solid black line) provides
our estimate on how data points are distributed. Marginal likelihood assesses
the statistical power of the model (lower right panel). B, Same as A but
using a larger data set (n = 10). Tighter posterior results in a tighter and
more accurate predictive probability distribution and higher average marginal
likelihood. C, D, Same as A and B but for a k = 1 model. E, Evolution of
mLLH as more data is accumulated from a k = 2 model. Colours show models
with different number of mixture components. Equality of mLLH at T = 1 is
a consequence of learning limited to the means. F, Same as E but for a data
set from a k = 3 mixture.

2.2 Learning in an unconstrained setting

Bayesian inference provides a consistent framework for learning the form,

the structure and the parameters of the model estimating the probability dis-

tribution of data. Learning entails the estimation of the posterior probability
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of parameters (✓) in a given model and/or that of the model (m) itself:

P(✓ | D,m) / P(D | ✓,m) P(✓,m) (2.1)
P(m | D) / P(D |m) P(m) (2.2)

Posterior probabilities for alternative model structures, and/or forms need to

be assessed individually and the marginal likelihood (mLLH),

P (D |m) =

Z
d✓ P (D | ✓,m)P (✓ |m) , (2.3)

plays a critical role in comparing these models: even with a uniform prior

probability distribution over alternative models, the mLLH function imple-

ments the automatic Occam’s razor principle, which ensures that the simplest

model that can account for the observed variance in the data has the highest

posterior probability. When the model prior is flat, the evaluation of mLLH is

sufficient to compare the models (for more details, see Section 1.2.3).

In the analytic treatment of MoG, the posterior over the means µ is a

MoG again, in which the number of mixture components grows exponentially

with the number of observations T (for more details see Appendix A.1.1).

Whether learning is performed on the whole batch of data at once or is done

in an online manner, Bayesian inference yields the posterior distribution of

parameters for any particular model structure at any particular time (Fig. 2.1a-

d). This posterior distribution can be used to make predictions on upcoming

data and learning helps to disentangle the predictions of different models.

While early in the training a complex model that reflects the actual statistics of

the data adequately might be discounted because of lack of sufficient evidence,

after extended experience the marginal likelihood of the simpler model will be

overcome by the model of right complexity (Fig. 2.1a-d). Switching time in

model selection is determined by the actual data samples and is defined by

the evolution of the mLLH (Fig. 2.1e,f). The Automatic Occam’s razor that

is implemented by the mLLH function ensures that no overfitting happens:

the learner discovers more complex structures if data statistics justifies such a

model but keeps the model as simple as possible.

50



2. What use is an episodic memory?

2.3 Semantic-only learner under constraints

While Eq. 2.1 provides a general recipe for adjusting the model parameters

to data, learning can be formulated in two markedly different ways. i), In

order to obtain a posterior at a particular time T , the whole data set DT

is evaluated according to Eq. 2.1. ii), Online learning relies on a parameter

posterior obtained at an earlier time point T � 1 to provide a prior for the

evaluation of novel data:

P
�
✓ | DT

,m
�
/ P

�
x
T | ✓,m

�
P
�
✓ | DT�1

,m
�

(2.4)

While online learning has the same power as batch learning, it has the benefit

that it is explicitly formulated such that the effect of the earlier data points

is summarised in the posterior calculated for DT�1. As a consequence, online

learning liberates us from the need to retain the whole data set: once the

posterior has been updated the data can be discarded. As long as both param-

eters and models are updated, this procedure provides a consistent method

to update and compare alternative hypotheses on how the model was gener-

ated without needing to keep a growing data set in memory. In contrast, if we

track only a limited number of models (one model being an extreme but valid

approach), discarding data prevents the consistent assessment of alternative

models.

The unavailability of the original data leads to an uncertainty as to the

possible past data sets that could lead to the same available statistics. An

ideal learner represents this uncertainty by means of a probability distribution

over possible past data sets. The learner needs a method for constructing such

a distribution based solely on the posterior of the current model, since this

contains all the information that it has retained. Given such a distribution, a

method is required to compare alternative models (i.e. estimate the mLLHs,

Eq. 2.3) and to assess what the parameters of the alternative models would

have been had those been tracked from the beginning (i.e. estimate parameter

posteriors of novel models Eq. 2.1). We propose that a natural approximation

of the current model’s estimate of the distribution of possible past data sets
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Figure 2.2: Neurath’s ship in structure space. The semantic learner can be
viewed as maintaining a MC representation using a single sample or particle
in hypothesis space that is updated with the arrival of each observation. Such
an approximation has also been proposed by Bramley et al. [70] for character-
ising human learning of causal structure. They repurpose an analogy that was
originally drawn between rebuilding a ship while at sea and theory building
in science. The original analogy according to Neurath: ‘We [theorists] are like

sailors who on the open sea must reconstruct their ship but are never able to

start afresh from the bottom. Where a beam is taken away a new one must at

once be put there, and for this the rest of the ship is used as support. In this

way, by using the old beams and driftwood the ship can be shaped entirely anew,

but only by gradual reconstruction.’

can be obtained by the assessment of the posterior predictive distribution,

P(x | D,m) =

Z
d✓P(x | ✓,m)P(✓ | D,m) ,

of the tracked model. This choice is conceptually related to using ‘pseudopat-

terns’ to transfer knowledge between different models [69]. It has the benefit

that while the parameter posteriors of different models in general span very dif-

ferent spaces and are thus not comparable, all models give predictions over the

same data space (Fig. 2.1a-d). Another benefit is that the predictive distribu-

tion is presumably available for the learner in any case, since it is a fundamental

component of numerous other cognitive computations as well.

2.3.1 Inferring the posterior of a novel model

In a given model, the posterior distribution of parameters summarises the

model’s knowledge about the statistics of the data. Since the predictive distri-
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bution of the tracked model carries information about the uncertainty of the

parameters this can be used to approximate the posterior of the parameters

in a novel model by minimising the dissimilarity of the predictive posterior

distributions. Minimising the KL divergence solves exactly this problem:

P(✓ | D,m
0) ⇡ argmin

P(✓|D,m0)
KL [P(x | D,m) ||P(x | D,m

0)] . (2.5)

Calculating the KL divergence analytically is in most cases unfeasible, there-

fore two approximations have been made. First, inspired by Snelson, 2005[71]

we were looking for a compact representation of the predictive posterior, but

instead of achieving this by simply taking a likely set of parameter settings,

we’ve assumed that the posterior comes from a simple parametric distribution

family:
P(✓ | D,m

0)! P(✓|⌘,m0) , (2.6)

where ⌘ provides a parametrisation of the approximate posterior. As a result,

the former functional optimisation problem in (Eq. 2.5) reduces to

⌘̂ = argmin
⌘

KL [P(x|D,m) ||P(x|⌘,m0)] , (2.7)

where P(x|⌘,m0) =
R
d✓P(x|✓,m0)P(✓|⌘,m0) is the approximate predictive

posterior distribution. Eq. 2.7 is equivalent to minimising the cross entropy,

which can be approximated using a Monte Carlo integral. After sampling

x̂i ⇠ P(x | D,m) we have to choose the ⌘ for which the expected value of

log (P(x|⌘,m0)) is maximal, concluding to a maximum likelihood estimation

over the generated ‘fake data’

⌘̂ = argmax
⌘

X

i

log (P(x̂i|⌘,m0)) (2.8)

The resulting P(✓|⌘̂,m0) is our estimate of the parameter posterior on the

original data. The parameter posterior in our implementation of MoG is a

MoG again, and we have found that a convenient and effective parametrisation

of the posterior uses a single mixture component. This approximate posterior

effectively reproduces both the true posterior and the true predictive posterior

distribution of the model (Fig. 2.3).
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Figure 2.3: Reconstruction of the parameter posterior from the predictive pos-
terior distribution. A, Posterior distribution of the component means in a
k = 2 model after observing n = 10 data points. Black contour plot : posterior
obtained by analytical calculation; coloured contour plots: posterior reconstruc-
tions. B, Comparison of the true predictive posterior distribution (black line)
and its approximations. Colours are matched across panels, dashed line: data
distribution.

2.3.2 Model comparison in constrained learners

Model comparison requires the assessment of the mLLH function for al-

ternative models (Eq. 2.3). However, even if we have access to the marginal

likelihood of the tracked model, discarding the original data points renders the

construction of the mLLH for the novel model impossible. Again, the posterior

of the tracked model summarises our knowledge of the data and and therefore

we rely on the predictions that can be drawn from the model posterior in or-

der to assess the possible data sets. This can be achieved by calculating the

expected value of the marginal likelihood over the predictive posterior:

ED⇤⇠P(D⇤ | D,m)[P(D⇤ |m0)], (2.9)

where D⇤ denotes fake data sets obtained from the predictive posterior dis-

tribution. This expected value can be evaluated by Monte Carlo sampling.

Upon the arrival of a novel data point x
T , fake data sets are sampled from

the predictive distribution. The novel data point is then appended to the fake

dataset and the marginal likelihoods are calculated and averaged. In general,

a single experience does not constitute adequate evidence for switching to an

alternative model, since it lacks sufficient statistical power (Fig. 2.4). Note,

that this claim is not true in extreme cases: there always exist outliers such
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Figure 2.4: Inability of the memory-constrained learner to increase model com-
plexity. Evolution of the true mLLH (analytic batch learner) of different models
(continuous lines) and the mLLH of a constrained semantic learner (dashed
lines) which only stores the (MAP estimate of) mixture components for earlier
data points. A single data point is insufficient to induce model switch between
k = 2 and k = 3 models (blue and orange, respectively). Inset shows an exam-
ple data set that is selected for demonstration purposes.

that the marginal likelihood’s automatic Occam’s Razor effect will be over-

powered by the unlikeliness of the new data (data not shown). If the present

model estimate is correct, and the observed data corroborates this model then

it can be integrated without information loss. We argue however, that models

of differing form and complexity have different kinds of regularities that they

can capture, and it is exactly the recurring appearance of features of the data

that the current model is unable to represent that necessitates model change.

Consequently, when a novel data point arrives which pushes the learner toward

a change of model form but is insufficient in itself to force a switch, then the

information loss prevents any subsequent model change (Fig. 2.4). This results

in an inability to switch models for the memory-constrained learner even after

observing arbitrary amount of evidence that supports a different one.

2.4 Episodic learner

The episodic learner differs from the semantic learner only in an additional

limited capacity storage for observations. Since the semantic learner’s inabil-

ity to change models is a result of loss of information about past data, it is

reasonable to expect that providing a buffer for data points is bound to help.

However, we also require that the capacity of episodic memory necessary to

enable model change should be small relative to the memory demands of a
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Figure 2.5: Ordered data and the effect of introducing episodic memory. mLLHs
of the analytic batch learners (solid lines) approximate learners (dashed lines).
A, B, Using ordered data and retaining the last two data points, the more
complex model can obtain sufficient statistical power to overcome the Occam’s
razor effect at transitions k = 1 ! 2 and k = 2 ! 3, respectively. C, For
sampled data (unordered) a sliding window for two data points is insufficient
to induce model switch. D, Episodic memory effectively rearranges data points
(compare with panel c) such that the arrival of a subsequent data point(s)
incompatible with the simple model induces model switch.

batch learner. Simply using this storage indiscriminately as a sliding window

is inefficient for enabling model change (Fig. 2.5) since the experiences that

taken together would provide the necessary statistical power for model change

might not arrive consecutively. Taking full advantage of episodic storage re-

quires the learner to optimise its contents and use it selectively. Thus, given a

bounded capacity, the selection criterion for determining which data points to

store in episodic and which in semantic memory is expected to be optimised

to support the learner in dealing with online model selection.1

In order to retain statistics necessary for model transitions, an episodic

learner needs to identify points that have a large information content with re-
1Note that here we make a binary choice between storing each observation in either

episodic or semantic memory, in order to avoid double-counting the information in the
observation.
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spect to fitting the models. The Shannon definition of surprise, � log(P (D|m)),

has been criticised as being unfit for this purpose because low predictive prob-

ably does not guarantee that the observation is informative with respect to the

appropriateness of the model. Therefore we adopt the Bayesian definition of

surprise [72], which characterises the extent to which the posterior is different

from the prior expectations

S(D,m) = KL(P (m|D)||P (m)). (2.10)

Ideally, episodes that are maximally informative regarding the model form

would be sought but that would require evaluating the model posterior,

P (m|DT�1), which is not accessible, since the learner doesn’t necessarily evalu-

ate the same set of models at different steps. Instead, we use the surprise in the

model parameters as a proxy: this selects observations that change the learner’s

beliefs about the parameters the most. A large change in the parameter pos-

terior signifies a difficulty in explaining the new observations and previously

seen data under the current model which suggests that a change of models

might be appropriate. Another insight can shed further light on the motiva-

tion behind our choice of selection criterion. Adopting the perspective that the

memory trace is a lossily compressed form of the data, it should be optimised

so that the distribution over past data – used in approximating the mLLH

and alternative posteriors – is going to be as accurate as possible. We can

view the combination of episodic and semantic memories as jointly providing a

representation of the agent’s past experiences PSM(x|⌘) +
P

xm2EM �(x� xm).

In order to achieve the best compression the learner needs to use each kind

of memory system to store the information it is most suited to reconstruct.

Performing such an optimisation would be relatively straightforward by com-

paring the combined representation with the data, but the data was previously

discarded. The learner can, however, select the data points that would change

the reconstruction to a large extent, by seeing how much the posterior would

change if the given experience was stored in semantic memory. Taken together,

we formulated the criterion for selecting a data point for storing in episodic

memory by assessing whether the dissimilarity of posteriors with the novel

data exceeds a fixed threshold:
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KL(P (µ|xT , ⌘, k)||P (µ|⌘, k)) > ⌧. (2.11)

Threshold ⌧ is measured in units of surprise and its value was determined em-

pirically, but performance is relatively robust to its choice. At low threshold

values the learner becomes non-selective, which results in accumulating se-

quential mini-batches. On the other hand, at high threshold levels the learner

will be reluctant to store anything in episodic memory and is thus asymptot-

ically equivalent to the semantic learner. When episodic memory is saturated

the learner “consolidates” the episodes by performing batch learning on its

content. Upon triggering a model change the episodes also serve to find the

parameter posterior of the novel model. For demonstration we have set the

maximal size of episodic memory to one and used it to show that the problems

of a constrained semantic learner can be effectively alleviated (Fig.2.5).

We have directly contrasted the performance of learning models in the

model selection task on random data sets of length T = 12 where the gener-

ating distribution had k = 2 or k = 3 components (Fig. 2.6). Besides the un-

constrained learner and the semantic learner, we set up models for an episodic

learner with a memory capacity of one and two items, and also a pseudo-

episodic learner that does not perform optimisation on the items to be stored

in episodic memory. The episodic learner can demonstrate a remarkable in-

crease in performance even with an extremely limited capacity. In order to

make a fair comparison between k = 1 ! 2 and k = 2 ! 3 switches we bal-

anced the difficulty of model switch through the variances of the Gaussians.

Our analysis on k = 2 ! 3 switch revealed an even more pronounced advan-

tage of the episodic learner over the semantic learner, doubling the probability

of a correct switch.

2.5 Order effects in a toy model of Flesch et al.’s

tree planting task

As we have seen, the unconstrained learner is insensitive to the order of

data points, while the constrained learners are not. Specifically, Fig. 2.5 shows

that the semantic learner is better at switching to a more complex model when
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Figure 2.6: Comparison of model learning in different learners.
UL:unconstrained; EL2: episodic with capacity 2; EL1: episodic with
capacity 1; ELb: pseudo episodic with no selectivity; SL: semantic. Probability
of k = 1 ! 2 and k = 2 ! 3 model switch when data comes from a MoG
with k = 2 and k = 3 (left and right panels, respectively) estimated from a
thousand model runs each.

data points arrive in a blocked fashion, i.e. when they are ordered such that

sequential points are likely to come from the same component in the MoG.

Standard neural network models of learning show the opposite pattern of sen-

sitivity to learning schedule, where they are able to achieve great performance

on i.i.d. or interleaved data, whereas in the blocked setting they typically only

maintain performance on the last task they were trained on, suffering from

what is known in the machine learning literature as catastrophic forgetting [73].

Human learning typically exhibits the former pattern: In a particularly striking

demonstration Flesch et al. [74] showed that humans, as opposed to standard

neural networks, benefit from blocked training in task switching paradigm.

In the following, we extend our episodic toy model to a simplified version of

the Flesch et al. experiment and demonstrate that the effect shown in Fig.2.5

applies to this setting as well.

2.5.1 Experimental setting

In Flesch et al.’s experiment, participants were tasked with deciding which

type of tree would thrive in two different gardens (the north and south garden).

Trees varied in terms of branch and leaf density (Fig. 2.7A). Each trial began

with an image of either the north or south garden as a contextual cue, followed

by an image of a tree, which participants could choose to plant or reject.

Based on these rewards participants could discover that only one of the tree
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Figure 2.7: Task switching experiment of Flesch et al. [74]. A, trees varied
along two latent feature dimensions, called ‘branchiness’ and ‘leafiness’. B, the
underlying rule for which trees grow well in each garden could be one of two
types. In the ‘cardinal’ condition, a single latent feature determines reward in
each garden, whereas in the ‘diagonal condition’, both features are required. C,
trials were presented for each subject in one of two possible training schedules:
under the ‘blocked’ schedule, subjects were first presented with all training
stimuli from the first garden, followed by all stimuli from the second. Under
the ‘interleaved’ schedule, the training stimuli were shuffled randomly. D, Task
accuracies (probabilities of making the correct decision on planting each tree
stimuli) in each garden at the end of training for a vanilla ANN (top) and
average over human subjects (bottom).

features was relevant to how well trees would grow in each garden(Fig. 2.7B,

cardinal rule). Participants were trained with either a blocked or an interleaved

curriculum and were evaluated on an interleaved test block without feedback

(Fig. 2.7C). Flesch et al. have found that humans, as opposed to standard

neural networks trained with stochastic gradient descent, perform better in

the blocked regime (Fig. 2.7D).

2.5.2 Computational model

In order to construct a minimal model of how the order effect arises in the

episodic learner in the tree planting experiment, we explored a simplified set-

ting where each observed variable is restricted to binary values: the garden or

context c, the tree features zi and the reward r. In this simplified setting each

trial is one of 16 possible observations. The algorithm we used for the learners

was identical to the one used in the MoG setting with the exception of the
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following simplifications: i) instead of computing the parameter posteriors and

mLLHs analytically, we used sequential importance sampling for approximat-

ing them and ii) instead of reconstructing the posteriors with the variational

approximation, we used the posterior of the dreamed dataset with the highest

mLLH on the winning model as the reconstruction. Note that this latter ap-

proximation for the posterior is much more noisy than the method used in the

MoG setting, as it only takes into account a single dreamed dataset.

The hypothesis space in which structure learning operates is depicted on

Fig 2.8. An important distinction between possible models in this hypothesis

space, analogous to learning the value of k in the MoG setting, is whether they

learn separate decision rules for the two gardens (2x_ models) or not (1x_

models). A second distinction is whether reward is dependent on either one or

the other tree feature(_x1D), or both of these features(_x2D models). Our

naming convention is based on specifying how many decision boundaries the

models use, followed by the dimensionality of the decision boundaries in tree

feature space. Each model had a discrete direction parameter (the direction of

the decision boundary) with a uniform prior, and a continuous noise parameter

with a beta prior. The noise parameter specifies the likelihood of observing a

reward for a tree that should not be rewarded according to the decision rule.

This parameter can incorporate both the possibility of noisy rewards given tree

features, as well as uncertainty in the estimation of the tree features given the

image of the tree for the subject. The 2x_ models are composed out of the

1x_ counterparts.

2.5.3 Results

In this hypothesis space, the automatic Occam’s razor orders the model

by increasing complexity. Due to the low dimensionality of the space of obser-

vations, we can enumerate all possible data sets consisting of a low number

of trials (Fig. 2.9). Note however that interestingly, each model has the same

mLLH on the first observation (not shown). We have generated data sets from

a cardinal model (2x1D) without noise and with T = 11, as in this simplified

setting this was typically sufficient for the unconstrained learner to discover

the correct model structure. Computing the proportion of successes over 100
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Figure 2.8: Space of possible model structures in the computational model of
a simplified version of the tree planting task. The simplest candidate model
where reward is determined in both tasks based solely on a single feature is
shown on the top left. Model complexity can be increased in two ways: i)
stepping to the right, the second tree feature is also taken into account in the
prediction of reward, ii) stepping downwards, the garden is also taken into
account, that is, the learner introduces a second decision boundary for reward
prediction, which is the ground truth model structure in the cardinal condition.
In the bottom right we see the model that uses two decision boundaries with
two features each, which is the ground truth model in the diagonal condition.

runs each, we have found that similarly to the MoG model, episodic memory is

essential in discovering the correct model structure (Fig 2.10A). Furthermore,

by looking at the same measure but varying whether the same data points

arrived in a blocked or an interleaved fashion, we have found a benefit in the

blocked condition for the episodic learner (Fig. 2.10B) as well as all versions

of the constrained learners (not shown).

2.6 Discussion

We have offered a normative argument for the existence of episodic mem-

ory by analysing a computational problem that the brain has to solve, namely

online model selection in an open-ended model space. We used a simple min-

imal model to demonstrate that the introduction of memory constraints has

dire consequences for a semantic-only learner and showed that these problems

are substantially mitigated by an episodic memory, the contents of which are

selected based on the Bayesian formalisation of surprise.
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2. What use is an episodic memory?

Figure 2.9: Marginal likelihoods of all possible datasets containing two observa-
tions. The automatic Occam’s Razor effect orders models by complexity even
with a flat prior over model structures. Cf. Fig. 1.14. Note that the horizontal
axis is ordered by the mllh-s and differs between axes, therefore the fact that
the two 1x1D models (x and y) overlap does not mean they are indistinguish-
able, only that they are of equal complexity.

Figure 2.10: Results of toy model in the simplified tree planting setting. A,
Proportion of 100 runs in which correct model structure (2x1D) was discovered
for the various learners. UL: unconstrained learner, E4: episodic learner with
episodic memory size of 4, E2: with size of 2, SL: semantic learner. Each learner
was trained with an interleaved schedule. B, Effect of training schedule. int:
same as EL2 on previous panel, blocked: same learner on same data set as int,
but observations were reordered so that learner first observed all points from
first garden then from second garden.

Our choice of model was motivated by analytical tractability which helped

us to set a benchmark to model learning. While this choice constrained the

form of the model and the size of the data set, the demonstrated problem is

fundamental. These restrictions can be lifted by allowing the iterative posterior

updates to be approximate, for example by using particle filters. Importantly,

we strove to only use principles and approximations that are agnostic to the

model class, so that the episodic learner can straightforwardly be extended to

richer hypothesis spaces.

The overall goal of our normative account is to shed light on the dynamics

underlying the organisation of long-term memory: from a continuous stream
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2. What use is an episodic memory?

of experience, how does the human brain determine what parts to remem-

ber and what to forget? It is extensively documented that humans are prone

to systematic biases in these decisions. We share the widely-held belief that

these systematic memory errors reflect rational adaptations to computational

resource constraints. In our assessment, a comprehensive explanation and de-

tailed predictions on how these processes work requires an understanding of

both the computational function and the constraints that shape the dynamics

of long-term memory. In this work, we aimed to provide the computational

backbone for such a normative understanding: although some aspects of the

current treatment are reminiscent of the characteristics of the dynamics of

human memory (e.g. storing detailed representations of surprising events), a

more direct comparison between model predictions and human performance

will require the analysis of model classes that can be related to available hu-

man data.
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Chapter 3

Semantic compression of episodic

memories

It has long been known that human memory is far from an exact reinstate-

ment of past sensory experience. In fact, memory has been found surprisingly

poor for even very frequently encountered objects such as coins [75], traffic

signs [76] or brand logos [77]. Rather than being random noise however, the

distortions in recalled experience show robust and structured biases. A great

number of experiments have shed light on systematic ways in which the dis-

tortions in recalled memories can be influenced both by past and future infor-

mation, as well as the context of encoding and recall. Canonical examples of

past knowledge influencing recall include experiments of Bartlett [78] where

for folk tales recalled by subjects of non-matching cultural background, the re-

called versions were found to be modified in ways that made the stories more

consistent with the subjects’ cultural background, leading to the suggestion

that memory seems to be more reconstructive than reproductive. Various ma-

nipulations of the encoding context have been shown to influence the recalled

memory; for example, presenting a label or theme before ambiguous sketch or

text stimuli modulates both recall accuracy and the kinds of distortions that

appear in the recalled memory [79, 80, 81]. Finally, paradigmatic examples

of memory disruptions due to information obtained after the experience be-

ing recalled include post-event misinformation [82], imagination inflation [83],

hindsight bias [84], or leading questions [85]. The rich set of systematic distor-

tions provides insights into the principles governing memory formation, which
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3. Semantic compression of episodic memories

ultimately provides a means to predict how experiences are transformed in

memory.

Traditionally, systematic biases in recalled memories have been interpreted

as failures, confabulations of an unreliable memory system [86]. In contrast,

adaptive accounts have been proposed that view these biases as being regret-

table but necessary byproducts of adaptive processes in the brain such as

generalisation, fast recognition or creativity [87, 88, 89]. Going even further,

Bayesian accounts of reconstructive memory argued that in some cases, the

memory distortions can be adaptive even if the goal is accurate recall, since

previous knowledge can be used to correct for inaccuracies and fill in missing

details in incomplete memories [90, 12, 91]. The Bayesian account provides a

principled way of decoding memory traces by combining prior statistical knowl-

edge with noise-corrupted information retained from the observation. However,

it leaves a fundamental question open: in a normative model of memory what

information needs to be retained and what pieces of information should be

sacrificed to satisfy constraints on memory resources?

In this paper we argue that viewing the transformation of sensory expe-

riences into memory traces as compression provides a normative framework

for memory distortions. Specifically, we consider lossy compression, a form of

compression where limited-capacity encoding is achieved at the price of im-

perfect decodability of original data, to characterise information loss during

encoding. We point out that by adapting the mathematical framework for

lossy compression, called rate distortion theory, to the constraints faced by the

brain, we obtain semantic compression. Key to semantic compression is the

assumption that a generative model of the environment is maintained in the

brain. This generative model describes how the observed statistics of the envi-

ronment has been generated from variables not directly observed through our

senses [92]. According to semantic compression, it is the latent variables of this

generative model of the environment that are used to compress experiences. If

memory is optimised for natural observation statistics, then assessing the pre-

dictions of lossy compression regarding memory distortions requires generative

models capable of handling such complex structured data. Constructing such

generative models and performing inference in them can be challenging there-

fore we capitalise on recent advances in machine learning: we use variational
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3. Semantic compression of episodic memories

autoencoders to learn approximate generative models of structured data [93].

Importantly, a form of variational autoencoders, the beta-variational autoen-

coders can be viewed as a variational approximation to rate distortion theory,

and we use this link between rate distortion theory and generative models to

provide a theoretical framework for a unifying explanation of a large body of

experimental data in the domain of memory distortions.

In the following, we introduce the theoretical background for semantic com-

pression and then apply semantic compression to three different domains in

memory distortions. First, we introduce basic concepts of rate distortion the-

ory. Second, we introduce variational autoencoders and their relationship to

lossy compression. Next, a paradigmatic example of memory distortion induced

by past experience, domain expertise is investigated. In the coming section we

discuss contextual effects through semantic compression. Finally, we discuss

how gradual change of compression as time progresses incurs changes in mem-

ory traces.

3.1 Theoretical framework

3.1.1 Rate distortion theory

The branch of information theory that deals with data compression

where information is lost during the process is rate distortion theory (RDT).

According to RDT, a compact code is constructed that can be used to en-

code any data point in the dataset. A central insight of RDT is that there

is no single optimal encoding: a trade-off emerges between the memory re-

sources (rate, R) that are used for storing a given observation, i.e. the length

of the code and the expected amount of distortion (D) in the recalled memory,

i.e. the reconstruction of the original data from the stored code. Any given

compression algorithm can be characterised by the trade-off it makes between

these two quantities, and thus defines a point in the rate distortion plane (RD

plane). An encoding, Q, can be improved by decreasing the expected distor-

tion, DQ, without increasing the rate, RQ. Thus, the best encoding under any

given memory resource constraint R is the one that minimises the expected
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3. Semantic compression of episodic memories

distortion when the rate is maximised at a specific value, R:

D(R) = inf
Q
(DQ), s.t. RQ  R,

or alternatively, by achieving a lower rate without increasing the expected

distortion. Achieving the lowest possible distortion for each possible rate traces

out the RD curve, establishing the range of possible optimal encoding schemes

for a given distribution over observations.

Under any given encoding, the distortion of an individual observation

(d(x, x̂)) between the observation (x) and its reconstruction (x̂) can change

across observations. The distortion term measures the expected amount of er-

ror that the encoding algorithm makes over the whole set of observations. The

function d(x, x̂) characterises how acceptable the distortion is and thereby de-

fines an ordering across pairs of observations and their reconstructions, which

defines the contribution of an observation to the the distortion term of RDT,

DQ = Ex[d(x, x̂)]. An optimal lossy compression algorithm will selectively pri-

oritise information such that alterations that are inconsequential according to

this measure are discarded first.

An alternative formulation of finding the best distortion, DQ, under the

constraint of limited rate, RQ can provide additional insights into the contin-

uum of solutions obtained at different rates. The Lagrange-multiplier formal-

ism is used for constrained optimisation of the distortion such that instead of

minimising DQ one needs to minimise

L = DQ + �RQ,

where the constraint of fixed rate when optimising the distortion is formu-

lated through the Lagrange-multiplier �, which sets the trade-off between two

terms. This formulation of the objective is only applicable when the RD curve

is strictly convex but this requirement is often fulfilled in practical cases.

According to this Lagrangian formulation, any compression method can be

associated with a point on the RD plane, with optimal algorithms lying on the

curve. Every point on it can be identified with a single value of �, which is

the local slope of the curve. Thus, � directly corresponds to a particular point

on the rate-distortion trade-off continuum: for example a high value of � is

68



3. Semantic compression of episodic memories

associated with strong compression, yielding a low rate but high distortion.

While RDT provides a normative framework for lossy compression, the

errors or compression artefacts resulting from traditional lossy compression

algorithms of images or video (such as block boundary artefacts characteristic

of JPEG) look qualitatively different from the errors committed by human

memory [94, 95]. If one intends to use RDT as a normative framework of human

memory errors then such mismatch ostensibly casts doubt on the applicability

of the framework to memory phenomena. However, compression of sensory

experience for the human brain is characterised by a number of constraints

which distinguish it from the traditional problem of compression of image and

video data. We propose to accommodate these constraints in the framework

of RDT to obtain semantic compression.

3.1.2 Semantic compression

A fundamental difference between RDT and the form of compression re-

quired by the brain is that while the former produces optimal reconstructions

given a known source distribution, the distribution of observations is not known

for the brain but has to be learned from experience over time. Specifically,

natural observation statistics define richly structured and high dimensional

distributions, which have to be learned from a comparatively limited set of

observations. In machine learning, this challenge is addressed by generative

models. In order to cope with severely limited training data, generative mod-

els include inductive biases such as restrictions on hypothesis spaces, priors or

hyperparameters. These biases influence decisions regarding what features of

the data are generalisable to future observations and what features should be

deemed random noise. We argue that since the problem of generalising from

a small amount of observations to the true underlying distribution is a fun-

damental challenge in both generative models and compression in memory,

similar inductive biases have to be incorporated in both. Therefore, we pro-

pose that the normative approach for adapting RDT to the problem of human

memory is through compression via generative models.

Probabilistic generative models have been implicated in understanding hu-

man and animal behaviour in a multitude of cognitive tasks [96, 97, 98, 34].
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For example, perception has been previously cast as a process of unconscious

inference, which is aimed at inferring the latent state of the environment based

on noisy sensory observations [92, 26]. This inference can be accomplished op-

timally by inverting the generative model which describes the way latent vari-

ables give rise to observations. Another domain where generative models have

found support is action planning, where the model is used as an environment

simulator to predict likely consequences of actions [30]. Following previous re-

search, we assume that a statistical model of the environment is maintained in

semantic memory and formalise semantic memory as a probabilistic generative

latent variable model of the environment [10, 11, 54]. We argue that semantic

memory represents the best estimate the brain has of environmental statistics,

and therefore assume that it is this approximate model of the environmental

statistics that compression is optimised for.

When the RDT framework is applied to the compression problem faced by

the brain, a further issue needs to be considered: RDT does not specify how

distortion should be measured, leaving it to be defined by the application. The

distortion function represents the agent’s judgements on how relevant partic-

ular features of the observation are and efficient compression hinges on selec-

tively retaining this information. Thus, the definition of the distortion func-

tion raises the question of what parts of experience are relevant for the human

brain. We argue that this problem is identical to that encountered in percep-

tion, where computations aim at extracting the latent variables underlying the

activity of sensory neurons. In semantic compression the distortion function

is defined by the generative model maintained by semantic memory, and the

relevant features of observations are those that are extracted into the latent

variables of this model. Importantly, such a choice for the distortion function

and optimising for the complex structure in natural observation statistics can

yield qualitatively different errors from those made by traditional compression

algorithms, which only exploit simple, low-level regularities in image statistics.

3.1.3 Variational approach

Generative models and rate distortion theory are separate frameworks de-

veloped with largely different goals, however there has been a flurry of recent
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work pointing out connections between the two [99, 100, 101]. A recent devel-

opment in machine learning is the introduction of variational autoencoders,

which can effectively learn a generative model of complex, high dimensional

distributions as well as perform approximate inference over the latent variables.

Interestingly, recent studies have established a link between a variant of vari-

ational autoencoders and rate distortion theory. Here we briefly describe the

variational framework in which rate distortion theory and generative models

can be jointly discussed.

Learning probabilistic latent variable generative models of natural stim-

uli such as images, videos and sound has been a major challenge in machine

learning and requires approximate methods. Many of these models utilise la-

tent variables, z, to factorise the distribution over observations, x. The set

of latent variables can be thought of as the factors that contribute to the

structure of the input data and constitute a representation of the data, often

with lower dimensionality. These latent representations often show desirable

qualities such as disentangling independent factors of variation. One of the

most successful approaches to learning approximate latent variable generative

models is a class of models called variational autoencoders (VAE) [93]. VAEs

are capable of jointly learning the parameters of the generative model as well

as performing inference by approximating the posterior distribution over la-

tent state variables through variational methods. In variational Bayesian infer-

ence the true posterior distribution, p(z|x), is approximated by a distribution

q�(z|x) from a simpler distribution family parameterised by �. Once such a

distribution family is chosen, the goal is to minimise the dissimilarity between

the true posterior and the approximate posterior:

argmin� KL(q�(z|x) || p(z|x)),

where KL is the Kullback-Leibler divergence, which quantifies the dissimilarity

between two probability distributions. While this term cannot be computed

directly, it can be shown that maximising the evidence lower bound (ELBO),

L(✓,�, x) = Ez⇠q�(z|x)(log p✓(x|z))�KL(q�(z|x)||p✓(z)),

also minimises the KL divergence. In addition to learning to perform accurate
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inference through optimising the parameters �, the generative model is also

learned through optimising the ELBO over the parameters ✓. The generative

model consists of the likelihood, p✓(x|z), describing how the observed variables

depend on the latents, and the prior distribution over latents p✓(z). The first

term of the ELBO is often called the reconstruction term, alluding to the

fact that it penalises inaccurate reconstruction of the observation. The second

term is usually viewed as a regularisation term, as it penalises deviations from

a simple posterior. In VAEs the approximate posterior is typically of a simple

form, such as a Gaussian, which is parameterised by its mean and covariance

structure. VAEs also utilise amortised inference, where the computation of the

approximate posterior is amortised by training a neural network to output the

parameters of the approximate posterior on the training set. The output of this

encoder then produces the parameters of the approximate posterior over z in

later observations. An extension of VAEs, �-VAE, is particularly relevant for

establishing a formal connection between generative models and RDT. �-VAE

introduces a scalar multiplier, �, that scales the regularisation term and can

effectively trade-off the two terms with the motivation that individual latent

variables of the learned latent representation correspond to independent and

interpretable sources of variation in the observed data, i.e. encouraging more

disentangled representations [102].

To understand the relationship between �-VAE and RDT, we turn to a spe-

cific formulation of compression called the information bottleneck (IB) method

[51]. The IB method extends RDT such that it guides the choice of the distor-

tion function. The IB method introduces the term relevant information, the

information that we intend to retain after compression. If the goal of com-

pression is to lose information such that estimation of the relevant quantity,

y, is minimally affected then we can formulate the relevant information as the

information in the compressed representation z with respect to the relevant

quantity y, that is the mutual information I(z, y). Consequently, in the loss

function of IB the goal of maximising relevant information is traded off with

compressing observations through the latent representation, and the loss to be

minimised becomes:
LIB = �I(z, y) + �I(x, z)

It can be shown that minimising the IB loss function corresponds to a dis-
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tortion measure that prioritises information that contributes to the prediction

of relevant quantity y [51]. Although the IB method provides an algorithm

for optimising the loss function, it is not feasible to apply to high dimen-

sional naturalistic data. Alemi et al. [99] have shown that the IB objective can

be efficiently approximated through variational methods. Importantly, the IB

method formally defines a supervised objective since optimisation of the com-

pression is achieved with the objective of optimising for a particular ‘output’

variable y, but an unsupervised version of the IB method can be constructed

which gives rise to the same objective as the �-VAE. In this sense, �-VAE can

be seen both as a generative model and a lossy compression algorithm: the

reconstruction term in the ELBO can be interpreted as the distortion, D, and

the information limiting regularisation term as the rate, R.

The correspondence between RDT and �-VAEs highlights the relation of

latent variable models to lossy compression. Inferring a posterior over latent

variables z upon the observation of stimulus x amounts to only retaining the

statistics of stimuli captured in variations in z but discarding those beyond

the sufficient statistics of the latent variables.

In summary, we use the framework of VAEs to learn the kind of genera-

tive model hypothesised to be maintained by the human brain and we link

approximate inference over the latent variables of �-VAE to inferences made

by humans. We then analyse this model from the point of view of lossy com-

pression, allowing us to model and provide a normative explanation for a large

variety of memory experiments.

3.2 Results

3.2.1 Domain expertise and congruency

According to semantic compression, efficient compression hinges upon ac-

curate knowledge of environmental statistics. Since in the case of the brain

these statistics are estimated based on experience collected over time, the ac-

curacy of the estimate is expected to increase with the amount of experience

within a cognitive domain. As the estimate becomes more accurate, compres-

sion becomes closer to optimal and consequently recall errors are expected
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to decrease. However, this enhancement in recall accuracy is only expected

to occur for observations congruent with the statistics of the domain, as a

compression algorithm optimised for one distribution will be poorer at en-

coding observations coming from a different distribution. Assuming semantic

compression, constructing artificial stimuli of the same domain but exhibiting

statistical structure incongruent with that of earlier experience will increase

recall errors.

Recall of chess board configurations

Chess is an ideal domain for computational analysis of expertise on memory

performance due to a number of factors. i) The data is rich, possible configura-

tions are astronomical; ii) chess games trace out a complex subspace of possible

configurations; iii) ‘natural’ game statistics is well documented; iv) expertise

is graded among individuals, allowing for a more fine-grained analysis of the

relationship between expertise and recall performance. We capitalise on these

properties of chess to test how expertise relates to memory performance in

different conditions.

In a widely studied paradigm in memory research using chess [103], a chess

board configuration is presented for less than 10 seconds, after which pieces are

removed and subjects are required to reconstruct the observed configuration

by placing the pieces on an empty board. Subjects are classified into four skill

levels on the basis of their Elo points. Recall performance is measured in two

conditions: In the case of ‘game’ (or ‘meaningful’) configurations chess pieces

are placed according to states taken from actual games, while in the case of

‘random’ (or ‘meaningless’) configurations positions of chess pieces of game

states were randomly shuffled.

We trained a �-VAE to learn the distribution of chess pieces during stan-

dard chess games downloaded from the FICS games database (chess-VAE).

Briefly, a board configuration was represented as a 64 by 13 element matrix

corresponding to the 64 positions and the 13 possible pieces, with an element

of the matrix taking one if a particular chess piece appeared on a given posi-

tion. This input was encoded with the �-VAE in a 64-dimensional latent space

(for additional details please refer to the Materials and Methods section). In

order to capture the varying amounts of experience that subjects have with
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Figure 3.1: Effect of domain expertise on memorising positions in
chess. A, Top, Chess board configurations from real game settings (game

configurations). Bottom, reconstructions of the configurations from memory.
These configurations are individual samples generated by the expert model
based on the encoding of the presented configurations. Green frames indicate
correctly reconstructed pieces, red frames indicate positions where a piece is
missing or erroneously appears in the reconstructed game; purple frames in-
dicate pieces whose identity is switched in the reconstruction. B, Same as
A but instead of game configurations randomly shuffled pieces are presented
(random configurations) and reconstructed. C, Reconstruction accuracy of the
model for game and random configurations as a function of the training size.
D, Reconstruction accuracy of human participants as a function of chess skill.
Data reproduced from [103].

these statistics, we trained the generative model on varying amounts of chess

games, using 0.1% (unskilled) to 90% (most skilled) of the entire training set

consisting of approximately 250000 board configurations. In addition to the

chess games, in order to mitigate overfitting to a low number of observations

for the unskilled model, we augmented the training data with 10000 uniformly

random board configurations at each skill level. This data augmentation can

be seen as a hand-crafted inductive bias which optimises for a uniform distri-

bution in the low data regime. Optimising for an uniform input distribution

means that the algorithm maintains an ability to reconstruct any possible

board configuration equally well, however since overall capacity is limited, this
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means that no configurations can be reconstructed accurately. In the case of

more skilled models the observations overwhelm the prior and consequently

the prior has negligible effect. Note that we are taking a conservative approach

in training the model, with no explicit instructions regarding the rules of chess

or intent to win the game. Explicit knowledge of the rules makes certain config-

urations impossible or exceedingly unlikely, which can be utilised to aid recall.

Nevertheless, reconstructions and unconditional samples show that the model

captures an approximate version of these rules. To model the experimental

recall setting, we used the inference network of the learned generative model

to encode either game or random boards into a latent representation. Then,

conditioning on the stored latent state we used the generative model to de-

code the memory trace into a reconstruction of the chess board configuration

(Fig. 3.1A,B). Reconstructions by the model show the monotonic increase in

accuracy for ‘game’ boards as a function of increasing chess skill (Fig. 3.1C).

A similar monotonic increase in recall performance was found in humans (Fig.

3.1D), where recall performance ranged from around five pieces for amateur

players to near perfect reconstruction for grandmasters.

In the ‘random’ condition, artificial stimuli obtained by randomisation de-

stroys a significant portion of the statistical structure present in the configura-

tion. In the case of ‘random’ boards the chess-VAE displays more errors both

in omitted pieces and in exchanged piece identities (Fig. 3.1B). As a function

of expertise, a monotonic increase in accuracy can be observed but with a

distinctly smaller slope than in ‘game’ positions (Fig. 3.1C). In contrast to

the ‘game’ stimuli case, for these artificial stimuli the accuracy advantage of

skilled human players also shrinks substantially (Fig. 3.1D), meaning that the

accuracy advantage of skilled players originates in the statistical structure of

the stimuli.

Naively, one might expect that it would be easier to recall boards with

only a few pieces, with the underlying assumption that storing the location

and identity of each additional piece requires additional memory resources.

However, board configurations containing most of the pieces are usually from

early in the game, with the configuration strongly constrained by the initial

state, whereas boards containing only a few pieces are typically from late in

the game less constrained by the starting game setting. Intuitively, differences
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in compressibility can be understood to arise from the relatively short descrip-

tion length of an early game configuration where one only needs to define the

movements of a few pieces relative to the initial state. In summary, increased

expertise in the statistics of a particular stimulus set specifically contributes to

the enhancement of recall performance, which can be explained by recruiting

knowledge stored in semantic memory for efficient compression of data.

Recall of pseudo-words

We have demonstrated that in semantic compression, accuracy of recon-

struction improves with greater knowledge of the statistical structure of a

given domain, and is also influenced by the congruency of the stimulus with

environmental statistics. In the chess example, this was a binary choice, as each

stimuli was either congruent (game boards) or incongruent (random boards).

However, congruency can be on a spectrum, and in such cases, reconstruc-

tion errors are expected to decrease proportionally with it. Such an effect was

demonstrated by Baddeley et al. [104, 105] in the domain of natural text.

Baddeley studied memory performance in an experiment where participants

were required to reproduce synthetic words a short delay. Their experiment in-

vestigated the frequency of reconstruction errors as a function of both word

length (which naturally increases memory load), and the level of congruence

with natural statistics. They used synthetic words whose statistics was sys-

tematically matched to the statistics of letters occurring in natural language,

where subjects could be expected to have similarly high level of familiarity. The

method for creating these synthetic words is as follows: Zeroth order words are

made up of random letters drawn uniformly. First order words are sequences

of letters with the same distribution as in English language, drawn indepen-

dently. Second order words are created using the probability of letter doublets,

meaning the next letter is predicted based on the previous one. Third order

words are created using the probability of triplets, where two letters predict

the third one, and so on for higher order statistics. They have found that the

degree to which the synthetic word conformed to the statistical structure of

English text was strongly correlated with recall accuracy (Fig. 3.2A).

To develop a model of English word statistics, we trained a �-VAE on words

from natural texts (word-VAE), using an architecture similar to the chess-VAE
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a b

Figure 3.2: Effect of stimulus’ congruence to natural statistics on recall accu-
racy in the synthetic word setting. Level of match between natural statistics
and the letter-statistics of synthetic words was controlled by adjusting the level
of statistics retained from natural words. 0th: uniform letter distribution; 1st :
only frequency of letters is retained; 2nd : frequency of letter pairs is retained,
etc. A, Human performance for different synthetic word lengths, based on data
from [105]. B, Performance of a �-VAE trained on natural text in a task anal-
ogous to the human experiment. Analysis of word-VAE and figure by Csenge
Frater [57].

but with letters of the alphabet replacing chess pieces. By using the word-VAE

to reconstruct synthetic words of varying lengths generated through the same

method as the experiment, we observed a monotonic decrease in the number

of errors with increasing order of approximation to natural text statistics for

each word length (Fig. 3.2B). Notably, similar to the experimental data, recall

accuracy curves are ordered by the number of letters, owing to the increasing

entropy with word length.

3.2.2 Gist-based distortions

Semantic compression assumes that the statistics of stimuli is learned

through a generative model and the latent variables of this generative model de-

termine what features of experience are retained in lossy compression. Ideally,

the latent representation that a generative model learns captures factors that

explain a large amount of variance in earlier observations, are strongly predic-

tive of future observations and rewards or allow for efficient manipulation of

the environment. These latent variables are hypothesised to include lower level

acoustic or visual features such as phonemes, or objects as well as abstract

concepts such as what constitutes a good chess move or melody. These more

abstract latent variables provide a high level, ‘gist’-like description of the ex-
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perience. By conditioning the generative model on the latent representation,

observations that are consistent with the high level description can be gen-

erated. While precise details of the episodes will be lost during the encoding

and decoding process, lost information can be supplemented by the generative

model during decoding. More specifically, the generative model can be used to

generate likely values of features for which the observed value was discarded

during compression.

One consequence of reconstruction through a generative model is that mem-

ory will be sensitive to changes in the observations that affect the latent vari-

ables but allow for distortions that do not. At sufficient levels of compression

this will result in falsely recognising or recalling items that were not themselves

presented, but are conceptually related to items that were.

A second consequence of compression using latent variables of a genera-

tive model is that factors that influence the interpretation of the observation,

that is the inference of values of latent variables, will also be reflected in the

reconstruction. Specifically, in the case of ambiguous stimuli, contextual infor-

mation influences the inferred latent representation, and consequently distorts

the compressed memory by shaping lower-level details in ways that better

conform to the shifted latent representation.

We demonstrate these effects in two experimental domains, the delayed re-

call of lists of words and recall of hand drawn sketches of objects. Note, that

it is currently a challenge in machine learning to identify the computational

principles that give rise to generative models that decompose observations into

latent variables resembling the representations in human semantic memory. A

particular advantage of using �-VAEs is that one of the main ingredients to

achieve learning such a representation is thought to be the principle of encour-

aging disentangled features. �-VAEs have been shown to be able to discover

disentangled latent representations from complex data in diverse domains and

are therefore a good candidate for investigating the forms of memory distor-

tions that result from the manipulations of latent representations in a domain-

general way.
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Intrusion of semantically related items during recall

One of the most extensively studied paradigms for reliably inducing strong

false memories is the Deese–Roediger–McDermott (DRM) paradigm, where

subjects have to recall lists of words. Language is a rich and computationally

difficult domain, however recent successes in generative modelling of language

suggest that the available size of corpuses makes it amenable to learning in

an unsupervised way [106]. An inherent advantage of the DRM experimental

setting is that since the recall order of word lists is not constrained, simpler,

so called ‘bag of words’ models can be used which are significantly easier to

train than text models that can also capture sequential dependencies between

words.

In the DRM paradigm [107], subjects are presented with a list of seman-

tically related words. The lists are created by collecting first associates of a

particular common word, the lure word, from human subjects. In the experi-

ment word lists are created from associates and presented to participants but

the lure word is never shown during the memorisation phase. After a given de-

lay that ranges from minutes to days, subjects have to either recall or recognise

the studied words.

a b

Figure 3.3: Memory distortions for lists of words. A, Frequency of recall
from 100 samples for individual words in the text model trained on Wikipedia
for the word list associated with ‘music’ from the DRM paper [107]. The lure
word (red) is characterised by a recall probability comparable to the studied
words (green). B, Comparison of recall probabilities for studied and lure words
in the text-VAE model for 10 word lists (left, see Methods), and experiment
(right) Roediger et al. [107].

In order to learn an approximate generative model for language, we have
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used Wikipedia excerpts subsampled to 40 words for training a simple VAE ar-

chitecture (text-VAE). The architecture was similar to the chess-VAE except

that the noise model and input representation was adapted to text obser-

vations. This architecture has also been analysed previously in the machine

learning literature as the Neural Variational Document Model (NVDM) [108].

The model takes text snippets as input to the �-VAE in bag of words repre-

sentation, i.e. each occurrence of a word in a document is counted in a vector

of dimension equal to the size of the entire vocabulary. This representation of

the input disregards the sequential structure of text. The encoder mapping a

document to a latent representation z of 100 dimensions consists of two dense

layers of 2000 hidden units. The generative model is similarly structured and

generates words independently (for additional details, see the Materials and

Methods section). Wikipedia was chosen as a large and reasonably compre-

hensive corpus. After training the text-VAE model, for any presented list of

words, a posterior can be inferred, which corresponds to the latent variables

that might underlie the observed word list. Nearest associates of the lure words

show that the learned representation captures similar statistical relationship

between words as the methods used in the original experiments to generate as-

sociate word lists (25% of corresponding DRM list words appear in 50 closest

associates to lure word in model, for examples see Methods). However, since

the statistics of words in an encyclopedia is different from that encountered by

a human during his lifetime, the model’s interpretation of certain words can

be biased (e.g ‘chair’ is strongly related to ‘organization’ in Wikipedia dataset

but not in the DRM word lists).

Generative models of text such as topic models often make the assump-

tion that natural text is concentrated on a low dimensional manifold in the

space of all possible text data. If compression is optimised for reconstructing

samples from a distribution with such manifold structure, then for observa-

tions that lie near the manifold the reconstruction will be drawn towards the

manifold to an extent determined by available capacity. Furthermore, these

generative models often contain an inductive bias, also characteristic of our

text-VAE, that text is generated by independent latent factors of variation.

Combined with natural text statistics this inductive bias results in the emer-

gence of latent topics, which constitute clusters of semantically related words.

81



3. Semantic compression of episodic memories

Any given text excerpt is represented as a specific mixture of possible topics.

When such an algorithm is used to encode word lists from the DRM paradigm,

the underlying implicit assumption of the model is that the list was generated

by some mixture of a few latent topics. As capacity is decreased, the recon-

structed observation will become an increasingly prototypical exemplar of the

activated topics, leading to the intrusion of semantically related lure words.

We used the trained model to test this hypothesis on the DRM paradigm. For

this, word lists of the original paradigm were taken as the set of words coming

from a document and we inferred a posterior representation associated with

this document. This posterior was subsequently sampled and the synthesised

word list was taken as the reconstruction of the original word list (Fig 3.3A).

As expected, since semantically related words are likely to occur together in

natural text, the model improved recall accuracy of such word lists relative

to lists of randomly selected words, however the price is the intrusion of non-

studied but semantically related words into the reconstructed list (Fig 3.3A).

The intrusions indicate that while there is a loss of information, the encod-

ing and decoding process keeps the reconstructed observation consistent with

a stored gist level interpretation of the original observation. Importantly, the

frequency of the recall of lure words is similar to the average frequency of the

recall of studied words, reminiscent of human performance in the DRM task

(Fig 3.3B).

Effect of varying contextual information on recall

We have argued that a second consequence of using the latent variables of a

generative model for compression is that context influences both the degree and

structure of distortions in recall. Hand drawn sketches of common objects have

been used as complex naturalistic stimuli for exploring memory distortions,

allowing the incorporation of contextual information by providing verbal labels

or textual descriptions. The continuous nature of sketches allows us to explore

graded and structured distortions of the observation along with the context

dependence of encoding and recall. A dataset of millions of labelled sketch

drawings created by a large and diverse set of human users of a browser-based

game became available recently, and VAEs capable of handling these high

dimensional data have been developed [109].
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A well-known and robust example of the effect of contextual information

is the experiment of Carmichael et al. [80]. In the classical experiment, inten-

tionally ambiguous hand drawn sketches of objects from common categories

were presented to subjects who were asked to reproduce these images after

a delay. Two separate groups of participants were required to reproduce the

sketches, with each group in one of two contexts. Context was established by

providing a category name preceding the presentation of the drawings, with

each name being consistent with one possible interpretation of the drawing.

The authors found that, depending on the contextual cues, systematic biases

were introduced in reproduced images that made the drawing more consistent

with the provided label (Fig. 3.4B).

In order to analyse contextual effects in reconstruction in semantic com-

pression we trained a VAE on sketch drawings from the QuickDraw data set

(sketch-VAE). As an approximation of the semantic model for sketch drawings,

we used the Sketch-RNN architecture, which models sketches not as raster

images but as a series of sequential pen movements [109]. The model uses

recurrent neural networks to make predictions on each subsequent stroke con-

ditioned on its hidden state and the previous one and assumes Gaussian motor

noise. We have selected ambiguous object-pairs from the QuickDraw data set

and trained the model on 75000 drawings of each category. In order to model

the effect of presenting a contextual cue, we have trained a conditional model

on sketches belonging to each label. Each of these models represents a label

conditional generative distribution p(x|z, y = labeli) and a label conditional

approximate posterior q(z|x, y = labeli). During inference, we use the corre-

sponding distributions to reconstruct the same ambiguous image. Consistent

with human data presented (Fig. 3.4B), reconstructions from the conditional

posterior resulted in systematic distortions of the original image consistent

with the provided label (Fig. 3.4A). Systematic distortions introduced by the

model were rich, spanning addition or deletion of features, rescaling of features,

or subtle but characteristic changes in the shapes of reconstructed drawings

(Fig. 3.4C). Systematic rescaling of features has been observed in humans [110],

which is qualitatively similar to the rescaling found in the sketch-VAE model

(Fig. 3.4D).
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Figure 3.4: Context effects on reconstruction of line drawing from
memory. A, Middle column, Ambiguous line drawings from the QuickDraw
data set of eyeglasses and dumbbells. Left and right columns, Reconstructions
of the image from memory in the dumbbell and eyeglasses contexts, respec-
tively. Context is modelled by using a sketch-VAE trained on sketches from a
single category with beta = 2. B, Examples of ambiguous drawings (middle

column) and their reconstructions (side columns) when cues are provided to
participants (shown as text labels). Data is reproduced from [80]. C, Effect of
contextual information on the visual features in recalled stimuli in the model.
Quantitative changes (top), qualitative changes (middle), and subtle changes in
characteristics (bottom) occur as a result of contextual recall. D, Quantitative
changes in visual features with changing context (proportion of the length of
the line connecting circular features in the eyeglasses and dumbbell contexts)
in the Sketch-RNN model (left) and experiment (right). Experimental data
reproduced from [110]
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3.2.3 Rate distortion trade-off

The value of retaining information from a given episode is likely to vary

with respect to a multitude of factors such as how surprising the episode is,

its relevance for predicting the near future or its emotional valence. As a con-

sequence, we propose that memory resources allocated to storing episodes are

unlikely to be constant either at the time of encoding or as a function of time. If

memory resources are to be distributed rationally, this memory decay should

not result in random forgetting as information theory provides a principled

way of discarding information so that memories degrade gracefully.

Formally, optimal forgetting entails moving along the line of optimal en-

codings in the rate distortion plane in the direction of decreasing rate (Fig.

3.5A). At one extreme, where the rate distortion function intercepts the rate

axis, resources are sufficient for lossless compression, meaning that verbatim

recall is possible. At the other intercept, no information is retained relating

to the individual episode and reconstruction is based purely on knowledge of

environmental statistics. Starting from the point corresponding to verbatim

compression, the memory trace becomes increasingly gist-like, until a point

where even a very high level gist of the episode is lost. This way, the trade-off

between rate and distortion results in the emergence of a continuum between

gist and verbatim representations.

Temporal reduction of memory resources

In cognitive processes, such as prediction, time delay between storage of

information and its retrieval is a factor that fundamentally affects its relevance

and therefore the resources that should be dedicated to the particular piece

of information. Anderson et al. [86, 111] proposed that it is a property of the

natural environment that there is a decreasing need for information contained

in individual traces as time progresses. For example, information contained in

an email is more likely to be needed within a day of receiving a message than

after a month. By studying library borrowings, access times of digital files,

email sources and word appearances in the headlines of newspaper articles

they concluded that forgetting curves demonstrate that human memory is

adapted to this decreasing demand. These results have been corroborated by
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Figure 3.5: Rate distortion trade-off in memory for sketch drawings.
A, Illustration of stimulus reconstructions as changes in � result in different
points on the rate distortion curve for the sketch-VAE model. Inset image is
used as input and is reconstructed with various levels of compression. Optimal
forgetting implies moving along the curve in the direction of increasing � corre-
sponding to increasingly prototypical reconstructions of the original drawing.
B, Proportion of recalled sketches judged to show category specific distortions
in humans due to the context presented during learning at different delays be-
tween stimulus presentation and recall. Distortions were evaluated by two of
the experimenters and one judge naive to the purpose of the experiment. Data
reproduced from [110]. C, Proportion of sketches reconstructed by the model
showing category specific distortion as a function of increasing compression.
Quantitative changes in visual features are assessed, similar to Fig. 3.4D.

forgetting curves of US presidents in multiple generations of college students

[112]. This argument motivates the idea that different rate-distortion trade-

offs can be studied by controlling the time between stimulus presentation and

recall or recognition. The effect of retention interval has been studied both

in the recall of hand-drawn sketches and even more extensively in the DRM

literature, allowing us to contrast it with our model’s predictions on targeting

various points of the rate distortion trade-off.

In order to model the effect of delay, we have optimised models for increas-

ing levels of compression by training them with increasingly larger �s. Since

stronger compression implies more gist-like reconstructions, the high level con-
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text has a stronger effect on the recalled drawing as memory resources are

decreased in the sketch-VAE model (Fig. 3.5A). We assessed the scaling of

features for the ambiguous eyeglasses-dumbbell stimulus in the two contexts

as a function of available memory resources. The analysis demonstrated more

frequent category-related distortions for �s associated with longer delays. (Fig.

3.5C). Similarly, higher levels of context related distortions were found for the

same pair when recollection was tested with increasing amounts of delay with

human participants [110] (Fig. 3.5B).

Several studies have examined the effect of delay on recall performance in

the DRM paradigm [113, 114, 115]. Toglia et al. [113] has performed the ex-

periment with recall immediately after presentation of the lists or after delays

of one or three weeks. In contrast with most of the prior work on the sub-

ject, retention intervals were varied between subjects, avoiding artefacts due

to retesting the same subject. They have found that while recall for studied

words had fallen sharply, recall of lure words was relatively unaffected even

after three weeks. In a variation of the original paradigm, for some of the sub-

jects they have presented lists in a ‘random’ condition, pooling the words from

six lists and presenting them in shuffled order. Interestingly, in the random

condition recall probability of lure words had increased as compared to shorter

delays at week 3. An even longer delay of two months has been studied by

Seamon et al. [114], where they have found that eventually the recall of lure

words also approaches zero. Thapar & McDermott [115] have looked at a sim-

ilar design with a maximum delay of one week while also modulating depth

of processing at the time of encoding. Many other studies besides these have

examined the effect of various manipulations on accuracy for delayed recall but

it has been a robust finding that memory for lure words, that is false memories,

are more persistent in time than memory for studied words (Fig 3.6D).

We have investigated the dependence of recall on memory constraints in the

word list recall paradigm using our text-VAE model. We have trained separate

models for each memory constraint, corresponding to various levels of the rate

distortion trade-off parameter �. We then used these models to reconstruct

each word list at each setting of the memory constraint and subsequently

evaluate recall accuracy for studied and lure words separately. Reflecting a

transition from a verbatim-like to a more gist-like latent representation, recall
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Figure 3.6: Rate distortion trade-off in forgetting over time. A,B: Using
the text-VAE model, we modelled the dependence of memory representations
on time by gradually increasing the compression rate, �. Recall probabilities
averaged over multiple word lists of studied and lure words was measured on
a text-VAE trained on Wikipedia entries (top) and on a synthetic vocabulary
(bottom). Increasing the compression rate results in a monotonically decreas-
ing recall performance for studied words. In contrast, increased delay of recall
leads to an increase in false memories. For critical NS (lure) words the re-
call probability initially increases with larger compression rates but very high
compression rates result in losing gist-like recall as well. Asymptotically the
performance on semantically related S words will approach the performance
on random word lists as less and less of the structure of the data is used. C,D:
Difference between recall probabilities for lure words and studied words as a
function of the delay between recall and study for the model (top) and ex-
periments (bottom). Both Wikipedia-trained and synthetic vocabulary trained
models predict persistence of false recall of non-studied lure words as com-
pared to studied words, visible as an increase in the difference between lure
and studied word recall rates as a function of time. For even longer delays, the
gist information is progressively forgotten as well and consequently recall rates
for both lure and studied words approach zero. The same pattern of increasing
rate up to a delay of three weeks and a subsequent decrease can be observed
in experimental data. Data is reproduced from Toglia et al. [113], Seamon et
al. [114] and Thapar & McDermott [115].

performance on studied words decreased monotonically with increased level of

compression. The decrease in accurate recall was paralleled by an increase in

gist-based intrusions of related lure words starting from a negligible level as
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the latent representation incrementally came to resemble a topic model. This

was followed by a reversion of false recall rates to negligible levels, reflecting

a loss of even gist information due to extremely limited capacity (Fig. 3.6A).

Note that we have restricted our analysis to the main effect of length of delay

in the delayed recall DRM experiments and thus our text-VAE does not ex-

plain the effects of manipulating depth of processing or word order effects. In

order to control for the mismatch between Wikipedia and natural text statis-

tics, in addition to the text-VAE trained on Wikipedia articles, we also tested

model performance on synthetic data. We generated a synthetic corpus with

controlled statistics from a Latent Dirichlet Allocation (LDA) topic model,

which models statistical structure in text by assuming the presence of latent

topics that are present in each document. In order to construct DRM lists for

the synthetic model, we have used nearest neighbours according to word em-

beddings learned from the synthetic corpus (see Methods for further details).

The synthetic data trained text-VAE shows a transient increase in lure recall,

similar to the one observed with the Wikipedia-trained model (Fig. 3.6B).

We have argued that a decreasing need for information contained in a mem-

ory trace over time implies that memory resources assigned to the trace should

be decreased. Therefore, according to RDT, the delay between encoding and

recall corresponds to a change in the RD trade-off, controlled by the � param-

eter. However, the exact mapping between length of delay and the numerical

value of � can’t be derived from the theory but has to be calibrated based on

measurements. In the standard DRM experiments, recall probabilities of stud-

ied and critical non-studied words are similar (Fig 3.3D), and consequently we

set � corresponding to immediate recall to be the same as in our model of the

original experiment (� = 0.1 for the Wikipedia trained model and � = 0.5 for

the model trained on synthetic data). Increasing the rate from this level (de-

creasing �) results in increasing accuracy and thus the gradual disappearance

of false memories. Since time delays are necessarily positive, the predictions

of the model in this regime describe a hypothetical situation where memory

resources available to the subjects were increased above what is typically mea-

sured in this paradigm. On the other hand, modelling memory decay in time by

decreasing the rate results in a decrease in the recall of studied words, and an

initial increase (for the models trained on Wikipedia) or much less pronounced
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decrease (for synthetic data) in false memories, resulting in a similar pattern

of relative advantage of lure words over studied words after medium-length

delays as the one seen in human experiments (Fig 3.6C). At very high levels of

compression (high �), recall for all word types is poor, as even the broad theme

of the list becomes forgotten and the model samples lists of related words that

occur together frequently in natural text.

3.3 Discussion

In this paper we demonstrated that the principle of lossy compression pro-

vides the basis for a unifying normative account of a wide variety of systematic

memory errors. Central to our approach was that we related inference in prob-

abilistic generative models to rate distortion theory: inferring the latent vari-

ables underlying observations amounted to selectively discarding information

not represented in the latent variables, thus establishing a lossy compression

method. We used a recently developed machine learning framework to train

a probabilistic generative model on a variety of naturalistic, high dimensional

data sets (chess games, line drawings, and natural text). We showed that the

effect of domain expertise on recall accuracy in remembering chess board po-

sitions and gist-based distortions in remembering semantically related word

lists arise as straightforward consequences of optimising the rate distortion

objective. Furthermore, we demonstrated the emergence of varying degrees of

‘gistness’, resulting from the rate distortion trade-off.

3.3.1 Interpreting memory distortions as lossy compres-

sion

The experiments discussed in the study demonstrate key consequences of

semantic compression in a single computational framework. The primary ap-

peal of this framework is that it can integrate a large variety of experimen-

tal observations under a simple computational principle. The demonstrated

effects, however, are more general than the experiments discussed here. For in-

stance, the effect of domain expertise has widespread support in the memory

literature not just in the domain of chess but also memory for sports trivia,
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software code, medical images, and other games [116]. In addition to the ef-

fect of varying levels of expertise on recall accuracy, a similar effect arises if

the congruence of stimuli to the statistical structure of the domain is varied

along a spectrum, for example the order to which letter statistics of words con-

form to that of the English language [105]. The encoding of the observation

into a posterior over latent variables can be understood as compressing sen-

sory experience into sufficient statistics for the latents, which in addition to the

gist-based distortion experiments analysed here explains seemingly paradoxical

results that discrimination performance of sound textures decreases with in-

creasing stimulus duration when stimulus samples come from the same texture

family [117]. Such a process also implies that the level of difficulty of inference

affects the accuracy of the recalled memory trace. Similar to the Carmichael

effect, classical memory experiments have shown that providing a concise con-

text which aids the interpretation of otherwise strongly ambiguous stimuli can

greatly increase retention accuracy [79, 81]. Beyond the effect of expertise on

reconstruction accuracy, the Chase and Simon experiments (1973) also display

effects that are related to representing latent variables. In particular, temporal

dependencies in placements of chess pieces were suggested to reflect chunk-

ing mechanisms. The proposed variational autoencoder framework naturally

generalises to these domains as well.

The delayed DRM paradigm has been extensively studied [113, 114, 115].

In this study we only have addressed the effect of delay alone but effects such

as divided attention, order effects and depth of processing were not discussed.

Some of these could be addressed by natural extensions of this model, for ex-

ample order effects would require extending the model to non-iid observations.

Others, such as the effect of varying depth of processing during encoding or

recall we do not see as direct corollaries of the RD framework and therefore

would require further assumptions.

We have modelled forgetting as the effect of decreasing capacity allocated

to a memory trace over time by training separate models for different levels of

compression. A limitation of this approach is that there is no guarantee that

a slightly compressed representation taken from a model with low � can be

converted into the strongly compressed representation of the model given by

a high �, as it is possible that the high � representation utilises information
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that is present in the original observation but not in the low � representation

(although in toy settings this seems not to be the case as the introduction of

further capacity leads to capturing additional data generative factors [118]).

Furthermore, taken as a process model this approach would require storing a

separate semantic model for each available level of compression. Approaches

where a single model is trained for compression at multiple rates have been

proposed in the machine learning literature [119, 120]. In addition, hierarchical

generative models have been introduced that are capable of generating obser-

vations at progressively increasing level of detail by conditioning on variables

at more and more levels of the hierarchy [121, 122, 123]. Such hierarchical gen-

erative models define a straightforward process for converting a memory trace

into one requiring lower capacity by selectively discarding information. The

lowest level of compression is achieved by storing all levels of latent variables,

then as time progresses, the states of successive levels of variables are discarded

beginning with the one closest to the input layer. Some of these models show

semantically meaningful partition of information between the layers in limited

domains. For example in Maaloe et al.(2019), the compression process outlined

above applied to portraits initially retains information about wearing glasses

but discarding the specific information that those are sunglasses, and at later

stages of compression it forgets about the glasses while keeping a large portion

of facial features still intact. One way in which such a compression could be

implemented is if semantic compression utilises the hierarchical representations

in sensory cortices as have earlier been argued in [124, 125, 58].

3.3.2 Theoretical considerations

Application of RDT to lossy compression in the brain seems to be a natu-

ral choice. A closer inspection of the problem, however, reveals that from the

perspective of compression and specifically its formal theory, RDT, a funda-

mental challenge arises. In memory systems, the data set used to learn the

model is inherently incomplete, that is only a subset of the data that specifies

the model had been observed. This setting defies a critical assumption of RDT

that the data statistics are known. The brain tackles the issue of incomplete

data by updating the model continuously when new data is observed. However,
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the constraint that the statistics of observations is being learned concurrently

with using it for compression places unique demands on a memory system. We

have previously argued that if the overall structure of the model describing

the environment is known then the parameters of the model can be updated

once new observations are made and the only information that needs to be

maintained is the sufficient statistics of model parameters. Consequently, other

features that are not part of the sufficient statistics can be discarded without

harm. However, if there is uncertainty over model structure and it is not a

priori known which features are relevant for the model, then the ability to

reconstruct the data becomes critical [54]. The need for such reconstructive

ability motivates our use of unsupervised learning, which attempts to capture

all of the variance in the data when resources are not bounded, constituting a

perfect episodic memory. In case that relevance has to be sensitive to predictive

ability [6, 126], rewards or a supervision signal, the framework can be straight-

forwardly extended through the same deep variational information bottleneck

objective [9, 99]. Task variables can potentially also be accommodated in a

generative perspective in which task variables are part of a generative model.

Such models have been introduced in machine learning [127].

The variational approximation that we have used here provides a useful tool

for integrating principles of RDT and probabilistic generative models, which

can be tested under conditions where data complexity is close to that of the

natural environment. Since this is the data set that human memory systems

are adapted for, we believe that these are relevant stimuli to contrast capacity

constraints of the model and that of human memory systems. Application of

the framework, however, also comes with specific choices and alternative for-

mulations are possible. In RDT and the IB method, the rate term is defined as

the mutual information between the observation and the latent code which the

variational method provides an upper bound on. This is an abstract constraint,

and the specific influences on the latent representation depend on model ar-

chitecture. For example changing the Gaussian prior to a Laplace distribution

would result in a constraint on the sparsity of latent activations. Furthermore,

it has been argued that memory resource constraints for the brain would be

better captured by restricting the representational cost of storing the encoding,

corresponding to minimising the entropy of the code instead of the mutual in-
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formation[128]. This choice leads to the Deterministic Information Bottleneck

(DIB) method, which can lead to qualitative differences such as the optimal

reconstructions being deterministic. Variational approximations also exist for

the DIB, and it has been argued that a discrete latent space variant of varia-

tional autoencoders called Vector Quantised Variational Autoencoder can be

viewed as an approximation to the variational DIB principle. Furthermore, the

correspondence between RDT and generative models can be drawn in alter-

native ways: Balle et al. [101] show a correspondence where the posterior is of

fixed variance and the multiplication factor beta arises from the variance of the

observation noise. We see the information theoretical form of the bottleneck

constraint as an approximation to multiple constraint terms, possibly arising

from the demands of cognitive functions other than memory, each having a con-

tribution to shaping the latent representation. The question of which variant

of the computational framework and what combination of constraints would

correspond most closely to representations and memory distortions measured

in human experiments is a subject for further investigation.

3.3.3 Related work

RDT has recently been proposed as a framework to investigate distortions

of memory by Bates and Jacobs (2020) [129]. While the computational prin-

ciples they apply and those in this and our previous work [130] have strong

parallels, the differences highlight different aspects of using generative models

for compressing complex data. While VAEs constitute state-of-the-art in ma-

chine learning for learning generative models of high dimensional data, even

these models struggle to capture the full richness of natural stimuli. In partic-

ular, learning highly structured noise models has proven difficult, leading to

issues such as blurred reconstructions [131]. In order to mitigate this problem,

instead of using pixel image data, we have opted to use data represented in low

level features such as chess board locations or pen stroke endpoints. This choice

essentially circumvents the problem of learning the low level noise model for

the network. Bates and Jacobs [129] take the alternative approach of working

directly with pixel data and thus provide an end-to-end learned model. The

choice of training the model end-to-end versus learning over low level abstract
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features has complementary benefits: while using pixel data to study memory

effects is certainly appealing since the perceptual process is more completely in-

tegrated, it has the disadvantage that the generative model needs to cope with

limitations of VAEs on natural images, such as blurry reconstructions. Blau et

al [132] proposed that the issue of perceptual quality of reconstructions could

be mitigated by introducing an additional term to the RD trade-off, which

could be optimised utilising the framework of the other prominent form of

deep generative models besides VAEs, Generative Adversarial Networks [133].

We have argued that while we rely on the unsupervised version of the infor-

mation bottleneck to make the connection between RDT and latent variable

models, the information bottleneck is originally framed as a supervised method

targeting the relevant information regarding a task variable and the beta-VAE

extends naturally to this setting through the same variational objective [99].

Consequently, RDT enables incorporating the effects of task demands on the

learned representation in a principled way through the specification of the dis-

tortion function. While introducing such demands into the distortion would

allow an exploration of further aspects of memory distortions, we left these

for future work, restricting ourselves to the unsupervised version in our study.

Bates and Jacobs propose another method for incorporating task-variables in

their model by extending the unsupervised component with a decision net-

work, allowing task-variables to affect the latent representation. Among other

applications, they use these task variables to model category bias, however

they point out that such bias can also appear due solely to categorical struc-

ture present in the data distribution. This latter explanation is what we appeal

to in our study, although we agree that the latent representations in seman-

tic memory are presumably also shaped by task objectives. We believe that

further progress in machine learning in the area of learning generative models

will allow lifting current limitations and will provide the background for a fully

consistent model of memory.

Compression, and more specifically RDT has been proposed as a framework

for an ideal observer analysis in visual working memory and perception tasks

[134, 135, 136]. In Sims et al. [134] they experimentally demonstrate RDT’s

prediction that if memory is optimised for the statistics of stimuli learned in

the course of the experiment, recall should be less accurate in case the distri-
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bution of stimuli has high variance as opposed to a low variance condition. In

Sims et al. [135] they infer the distortion function in a bottom-up fashion from

behavioural data. One major point of contrast between this approach and ours

is that instead of inferring the distortion function from behaviour, in our study

the distortion function is implicitly defined by the inductive biases inherent in

using latent variable generative model used for compression. A second point of

contrast is that in all of these works, the authors apply RDT to low dimensional

perceptual tasks with simple statistics, where optimal encodings are feasible

to compute directly. In our approach it is the complex, high-dimensional and

strongly structured nature of input statistics that necessitates the use of gener-

ative models which in turn define the distortion function. In [136] they analyse

colour perception and memory and in addition to a low-level distortion term

measured in pixel space they introduce an additional term which penalises

distortions that result in the reconstruction crossing colour category bound-

aries. The additional term in the distortion introduces a category dependence

of reconstruction similarly to the category related distortions we have mod-

elled with the sketch-VAE, however they did not explore contextual effects in

reconstruction. We argue that these perceptually simple tasks, while allowing

for quantitative comparison of predictions with experimental data, are less ca-

pable of inducing the kinds of distortions that we are concerned with here, as

the need for generative models is most crucial when the input distribution is

complex, high-dimensional and strongly structured.

Our work is closely related to Bayesian account of reconstructive memory

approach of Hemmer et al. [12] where they provide a normative method for

combining episodic and gist information available in memory through an op-

timal Bayesian decoder. They assume that stored values for features in the

memory trace are noisy versions of the observed values. These noisy values are

then combined with feature priors through Bayes’ rule, which reduces noise in

the memory through exploiting prior knowledge. This decoding step is similar

to reconstructing the observation in a generative model conditioned on inferred

latents in our approach, however they do not consider the encoding step as part

of the same process which should be optimised. In semantic compression, fea-

tures are prioritised according to the distortion function and the optimisation

also concerns what information should be kept as part of the trace. As a re-
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sult, the amount of memory noise can vary as a function of how important

each feature is in relation to others and the memory constraints, which is a

fundamental difference from the setting considered in Hemmer et al. [12] (e.g.

the sketch-VAE automatically chooses a trade-off in accuracy between features

such as the presented glasses’ shape, the angle of the rims and the length of

the bridge connecting the rims). Hemmer & Steyvers [11] use a dual-route

generative model to explain the effect of semantic memory in a scene recall

task, but they do not relate their method to compression. Their topic model of

semantic memory is very similar to our text-VAE for certain settings of beta,

and they have a parameter corresponding to capacity. However, this capacity

parameter only affects the episodic route and does not affect the representation

of the semantic model. A crucial contribution of the RD perspective is that

it provides a principled way of changing the representation as a function of

available capacity. As a result, in our treatment dual routes are not required,

since RDT provides a continuous trade-off between episodic-like and semantic-

like memory traces. Furthermore, as the reconstructive ability of the semantic

route is not affected by capacity in their model, we believe that explaining

delayed recall results of very long delays such as in Seamon et al. [114] would

require even further assumptions. A trade-off similar to that implied by RDT

but without establishing a formal link to the theory of lossy compression has

been formulated in the context of communicative interaction and leads to the

emergence of semantic categories [137].

Human memory has a remarkable capacity to adaptively support decisions

in a versatile environment but it also displays a rich array of distortions [87,

138]. These systematic errors have the potential to shed light on the design

principles of our memory systems [86]. Performing complex tasks by agents

suggests that various computations can be supported by episodic and seman-

tic memory systems [139, 140, 61, 141]. Accordingly, memory distortions have

also been linked to different computational processes. In particular, besides di-

minishing resources, other normative arguments have been made to understand

various aspects of time-dependent deterioration of memories. Interference of

memories from novel experiences has been linked to the flexibility of the repre-

sented model [73, 142] and regularisation was proposed as a normative princi-

ple, which could help preventing overfitting [143]. Dynamics of the environment
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has been linked to adaptive forgetting rates [144, 145] and destabilisation of

earlier memories after their reactivation has been linked to model update [146].

Normative models of memory distortions fall into two broad categories. One

family of studies explored how the usage of latent variables to encode expe-

riences, i.e. performing inference in the internal model, introduces systematic

distortions [147, 11, 148]. Another family of studies explored how updating

this internal model of the environment, i.e. learning the internal model, leads

to various forms of memory distortions [149, 150, 54]. Common in all these

models is that an internal model of the environment is assumed to underlie

learning and inference and these internal models are described in terms of a

generative model of the environment. This indicates that capitalising on more

complex generative models capable of learning representations of more natu-

ralistic data in multiple domains can contribute to a deeper understanding of

memory dynamics in natural environments.
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Chapter 4

Implementation level analyses

In this chapter, we will explore two case studies that extend the top-down

approach of previous chapters by constructing mechanistic models on the level

of neural networks. First, we examine how the idea of semantic compression

and its realisation through hierarchical generative models can be related to

models of the visual cortex, as well as how it can explain certain features of

measurements of neural activity in V1 and V2. Second, we present an approach

for implementing structural knowledge, such as the partitioned task represen-

tations discussed in Chapter 2, in neural networks and learning this mechanism

in the context of the behavioural experiment analysed in Section 2.5.

4.1 Hierarchical semantic compression in the vi-

sual cortex

Sensory processing produces hierarchical representations, which according

to the semantic compression hypothesis, extract increasingly behaviourally rel-

evant quantities from raw stimuli. Predictions of neural activity in hierarchical

systems are most often made in supervised deterministic models, while prob-

abilistic generative models provide a more complete unifying view of sensory

perception (Section 1.2.2). Whether unsupervised generative models trained

on naturalistic stimuli give rise to representational layers of semantically in-

terpretable quantities is yet unresolved, as is whether such representations can

predict properties of neural responses in early vision. We use hierarchical vari-

ational autoencoders to learn a representation with graded compression levels
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from natural images, which exhibits variance according to perceptually rele-

vant texture categories. We predict measures of neural response statistics by

assessing the posterior distribution of latent variables in response to texture

stimuli. Experimental results show that linearly decodable information about

stimulus identity is lost in the secondary visual cortex while information is

gained about texture type, which behaviour is reproduced by the representa-

tional layers of our model. Deep generative models fitted to natural stimuli

open up opportunities to investigate perceptual top-down effects, uncertainty

representations along the visual hierarchy, and contributions of recognition and

generative components to neural responses.

Animals need to discard the bulk of information acquired through their sen-

sory organs to obtain the tiny portion that will be used for present or future

decisions in various tasks. The semantic compression hypothesis [55] proposes

that the efficient way to lose information is to encode the stimulus through

the latent variables in a model of the environment. In the ventral stream of

the visual cortex, compression is realised in a hierarchical manner where the

sequence of compression steps culminates in the recognition of objects and con-

cepts where variance along complex variables such as pose, lighting, and scale

are discarded. The Bayesian brain hypothesis suggests that successive layers of

representation correspond to latent variables of a hierarchical generative model

[124]. We propose that applying the semantic compression hypothesis to a hi-

erarchical Bayesian model results in a sequence of representational layers that

extract increasingly abstract descriptors of the observation from the statisti-

cal properties of the stimulus (Fig. 4.1). Consequently, representations will be

invariant to increasingly complex transformations at each layer. For example,

as depicted in Fig. 4.1, when presented by an animal fur pattern, conditioning

on the lowest-level inferred latents we can generate the same pattern with dif-

ferent observation conditions (such as lighting), on mid-level latents, different

samples from the same type of fur pattern, and on higher-level latents, dif-

ferent types of fur patterns. Measurements of auditory perception have shown

the extraction of summary statistics from complex stimuli [117] in a way com-

patible with semantic compression. Here we aim to show that unsupervised

hierarchical models also extract semantically relevant latent variables in the

visual domain.
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Figure 4.1: Vision as hierarchical inference. A probabilistic generative model
with multiple layers of latent variables (z1..3) is trained to compress natural
images efficiently (middle). When a specific stimulus (x) is presented to the
model, we can infer the corresponding latent representation in each layer. We
can condition the generative model to the inferred representation on any spe-
cific layer and generate samples from the model that keep the information
represented at the given layer and sample lower-level details from the learned
distributions (right). Layers of representation in the model can be used to make
predictions about measurements from different areas of the ventral stream of
the visual cortex (left).

Assessing representations in the visual hierarchy

What quantities influence the activity of neurons in various parts of the

visual hierarchy beyond the primary visual cortex (V1) is a question far from

settled. Recent studies characterise mid-level sensitivities in the secondary vi-

sual cortex (V2) [151]. How such sensitivities constitute a representation can be

defined in multiple ways, the simplest of which is linear decodability. Successive

processing areas implementing increasing linear decodability of behaviourally

relevant quantities is proposed in the hypothesis of representational untangling

in higher-level visual areas [152]. Furthermore, recent evidence suggests that

information related to texture categories is available linearly in V2 but not

in V1, while linear information about the stimulus identity available linearly

in V1 is lost at V2 [125], indicating different degrees of compression being

implemented in the early visual hierarchy as well. Here we set out to investi-
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gate if semantic compression in a generative model trained on natural images

reproduces this signature.

Predicting neural responses in hierarchical systems

Recent studies demonstrated impressive performance on predicting neural

activity in hierarchical systems [153, 154]. These models rely on feed-forward

deep networks trained to classify images. However, recent evidence suggests

that increasing predictive performance will require the consideration of top-

down effects [155], which have also been shown to play a role in cortical com-

putations experimentally [156]. Probabilistic generative models are well suited

to describe such effects [156], and have been used to predict response statistics

in early vision [157, 158, 159]. As opposed to feed-forward networks, hierar-

chical generative models are trained in an unsupervised way, trying to learn

the distribution of inputs as well as possible given capacity constraints instead

of trying to perform a specific task well, which is exactly what we expect

different layers of representations to do if they are to compress inputs to dif-

ferent degrees. The question of whether semantic compression is a product of

task-training or obtainable in an unsupervised way remains open.

There are a number of architectural choices one has to make when build-

ing a generative model. The lowest level of visual cortical representations is

suggested to be close to linear by [160], formulated as a generative model

by [161]. Beyond V1 we obviously need nonlinear computations, but the con-

straints on the kind of generative model that would capture this computation

are not well characterised, thus warranting the application of a generic machine

learning model implementing hierarchical inference. In this study we propose a

hierarchical probabilistic generative model fitted to natural stimuli, producing

multiple layers of increasingly compressed representations, suitable to make

predictions about statistical properties of neural activity in visual cortical ar-

eas in response to specific images.

Texture families to probe layers of representation

In order to probe hierarchical representations, we need stimulus sets of

compositional nature, such that low-level local features of the image are or-
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ganised to define an abstract property for the stimulus, which can be treated as

a categorical label. Recent results suggest that texture is a relevant abstraction

for the secondary visual cortex [151]. Texture images can be synthesised using

photographs of natural textures [162], enabling us to produce a large number

of samples from the same texture family (Fig. 4.2A). Such texture families are

well suited to test semantic compression through linear decodability, since the

average image of a family is always zero, all family-specific information being

present in higher-order pixel statistics, as opposed to e.g. the digit categories

of MNIST which are decodable linearly from the pixel space (Fig. 4.2B).

Figure 4.2: A: Samples from three texture families used to evaluate our models.
B: The digit categories of MNIST are linearly decodable from the data space,
while texture families are not characterised by different average pixel patterns,
thus are not decodable linearly. Dashed lines indicate chance values, while bars
and error bars represent mean and S.E.M. of cross-validation folds respectively.

Hierarchical variational autoencoders

Bayesian inference in hierarchical models is computationally intensive, thus

the brain is expected to implement efficient approximate solutions. Variational

methods use tractable distributions to infer the posterior of latent variables.

Recognition-generative models, such as variational autoencoders (VAE) use an

explicit feed-forward model to implement variational inference [163, 93].

VAEs have been used to describe semantic compression using a capacity

parameter to balance the fidelity and the bandwidth of the latent represen-

tation [100]. They have been demonstrated to capture the abstraction of the

digit category in MNIST, but not in more complex categorical stimuli [164].

A natural extension of the VAE model family is to define hierarchical layers

of latent representations in order to capture the stimulus statistics at different
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levels of abstraction, such as in Fig. 4.1. Learning such hierarchical representa-

tions is a nontrivial problem, for which multiple proposed solutions exist. One

of these is the Ladder Variational Autoencoder (LVAE) [165], which uses a

direct feed-forward mapping from the stimulus to all latent layers during infer-

ence, allowing for the efficient learning of latent hierarchies while introducing

no additional computational steps into the generative model. We used LVAEs

as models of the representational hierarchy in the ventral stream, fitting them

to naturalistic stimulus statistics and then presenting them texture stimuli to

compare properties of the inferred representations to those measured from the

visual cortex.

Results

We fitted a two-layer LVAE to whitened natural image patches of 16x16

pixels obtained from the van Hateren dataset [166] (shown in Fig. 4.3E). The

architecture consisted of 20 and 5 stochastic units in the two latent layers.

The lower level representation was connected to the stimulus through a linear

encoder and decoder. The second layer was connected to the first using two

densely connected ReLU layers of 32 units each and a batch normalisation

layer both in the encoder and the decoder. The observation noise was fixed at

0.1. The parameters of the model were fitted to the natural patches using the

Adam optimiser for 60 epochs with a learning rate of 0.001, using a burn-in

period [165] of 10 epochs.

As we wanted to compare the properties of the learned representations

to those measured in macaques by [125], we inferred the latent representa-

tion of texture stimuli shown in Fig. 4.2A. We constructed linear mixture of

Gaussian decoders both to distinguish between the latent representations of

specific stimuli and the families they were sampled from, using the represen-

tations from both latent layers of the LVAE (Fig. 4.3B). The performance of

the decoders was calculated as the cross-validated hit rate for either 4 samples

from the same family or 4 from different families. The performances were plot-

ted against each other to contrast the properties of the representations learned

in the two layers (Fig. 4.3F). The first layer could be used much better to

recover the identity of the stimulus. Most of this information was lost at the
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Figure 4.3: Comparison of neural representations and those learned by a two-
layer LVAE from natural images. A, V1 (top) and V2 (bottom) population
response to each visual texture stimulus, displayed in a 2D coordinate system
that captures the responses of 102 V1 and 103 V2 neurons, computed using
t-SNE. Each point represents one texture image, with colour indicating the
texture family. Panels A-C adapted from Ziemba et al. [125]. B, Schematic of
sample (black) and family (red) classification. C, Comparison of proportion of
correct classification of V1 and V2 populations for family classification (red)
and sample classification (black). D, Same as panel A but for the two layers
of the LVAE model, large dots indicate the mean of each family. Samples from
the same family are more clustered together in the second layer. E, Whitened
natural patches used for training the model. F, The decodability of the stim-
ulus identity of texture stimuli of the kind shown in Fig. 4.2 (grey dots) and
the family they are sampled from (pink dots). Red and black dots represent
the mean of all the decoding comparisons and dashed lines represent chance
levels. The representation learned in the first layer of the LVAE contains more
information about the identity of the stimulus, while the second layer contains
more about the family (Cf. panel C).

second layer, while making the family more linearly decodable. This result is

in accordance with the findings from macaque V1 and V2 (Fig. 4.3C).

Semantic compression can be probed using nonlinear read-out instead of a

linear one as well. We used the t-SNE nonlinear embedding method to show

that the second-layer representation of texture images is more clustered ac-

cording to family membership (Fig. 4.3D), similarly to measurements from

macaque V1 and V2 (Fig. 4.3A).

We explored which architectural choices are essential to produce the results

we demonstrate. An indispensable feature of the model is the increasingly

compressed representation in the layers. However, the compression levels can
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be achieved by controlling the information capacity of the layers in multiple

ways, such as the dimensionality of the layers, but also the expressive power

of the encoders and decoders used in them. The latter property opens up an

avenue to train models of much higher latent dimensions with similar semantic

compression properties as ours.

Visualising semantic compression

The learned representations that reproduce experimentally measured un-

tangling effects are expected to compress the stimuli at different semantic lev-

els, as in Fig 4.1. Since we learn a model of natural images, a high number of

latent units would be necessary to learn all the factors of variance that include

the ones directly relevant to texture samples, making the levels of variation

easily observable visually. Instead of training such a model, we retrain an LVAE

using the texture stimuli, directly producing the subset of latents that describe

these stimuli in particular. We then infer the latent representation in each layer

in response to specific textures, and condition the generative model on the in-

ferred representation in each layer. We indeed observe that conditioning on

the lower layer produces samples that reproduce the particular content of the

input image and differ only due to the observation noise which is independent

across pixels. Conversely, conditioning the generative model on the higher layer

produces samples that come from the same texture family as the input, but

vary in terms of the particular realisation of the texture (Fig. 4.4). Variational

autoencoders implement hierarchical Bayesian inference producing a series of

increasingly compressed representation of the input. When trained on natural

images in an unsupervised way, they reproduce representational untangling of

texture stimuli similarly to the visual cortex of macaques, while the learned

generative model exhibits variations in the successive representational layers

corresponding to perceptual categories.
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Figure 4.4: Layer-conditional reconstructions from a two-layer LVAE trained
on texture stimuli. For two example stimuli (no border) we take three samples
from the posterior distribution of all latent variables, and generate synthetic
stimuli conditioning on the latent samples in the first (blue border) and the
second (green border) layer. First-layer generated samples differ only in terms
of pixel noise, while second-layer samples are different instances of the same
texture family.

4.2 Order effects and knowledge partitioning in

neural networks

As we noted in Section 2.5, it is a well-known problem in machine learn-

ing that artificial neural networks (ANNs) experience catastrophic forgetting

under continual learning. This means that when these networks are trained

sequentially on multiple tasks, they can only retain performance on the most

recent task [73]. However, the same networks can learn multiple tasks if the

training data is presented in a randomly interleaved manner. Interestingly, the

opposite has been observed in humans, who find it easier to identify the cor-

rect task structure when training data is presented in a sequential or blocked

format [74]. This sensitivity to order in standard ANNs also stands in con-

trast to our model of online structure learning presented in Chapter 2, which

exhibits a pattern similar to the human data. Here, we present a proposed

mechanism for how task structure, and specifically the knowledge partitioning

by task that we have relied on in the algorithmic-level model in Chapter 2 can

be achieved in ANNs and learned in the tree planting experiment of Flesch et

al. [74]. Additionally, we demonstrate how an expectation of a slowly changing

environment can result in confusion between the two contexts and impair the

discovery of the correct model structure in the interleaved setting.
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Methods

In this work, we used the same context-dependent decision task from Flesch

et al. [74] that we described in detail in Section 2.5. In this task, stimuli varied

continuously along two independent feature dimensions, and only one of the

two dimensions was relevant in each context. While the original experiment

used high-dimensional fractal tree images that varied in their density of leaves

and branches (as shown in Fig. 2.7), we simplified the neural network version by

replacing them with stylised images of Gaussian blobs whose x and y locations

varied (Fig 4.5A). We have also verified that the analysis applies to ANNs

trained on subsampled versions of the tree images (not shown; for details, see

the supplementary information of the full paper [59]).

For all of the analyses presented, we used three-layer perceptrons with

ReLU nonlinearities as our model of a standard ANN, also referred to as a

vanilla NN. The output of the network was a single neuron corresponding to

the expected reward, given that the tree observed in the trial would be planted.

The inputs to the network were the stylised images, concatenated with the

context encoded as a one-hot vector, which represented the background for

the tree image in the original version.

Context-modulated gating of task representations

When learning the tree task with interleaved contexts over trials, the stan-

dard ANN learns a partitioning of the hidden layer (Fig. 4.5B&C) via orthog-

onal patterns of weights from context input nodes to hidden units. This allows

learning of the relevant mappings for the two tasks to occur in orthogonal

subspaces (not shown, for details see [59]). At a mechanistic level, the network

learns anti-correlated context weights, so that the active context activates hid-

den units which carry information regarding relevant feature dimensions and

inhibits units carrying task irrelevant information. This inhibition maps the

irrelevant units to negative values, which are subsequently filtered out by the

ReLU nonlinearity (Fig. 4.5B, left). Importantly, because units that are active

only in the first context are gated off during the second task, the gradient

signal does not backpropagate and disrupt the representation learned for the

first task (4.5b, right). In this coding scheme, the context units act as gating
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Figure 4.5: Interleaved vs blocked training in vanilla, gated and hebbian net-
works. a, Simplified Gaussian blob input for each value of the latent features.
b, Schematic illustration of gating mechanism. The active context unit (green
x
(in)) increases the activation of the context relevant hidden unit (green y) and

pushes it into the linear interval of the ReLU activation function, letting this
activation pass on to the output. Conversely, the same unit inhibits the irrel-
evant hidden unit (purple y). In the second context (right), the other context
unit is active, and the output is defined by a different hidden unit. The ReLU
protects the weights leading into the inactive hidden units in a given context.
C: Context selectivity of hidden units in the standard version of the NN (top)
and the NN augmented with the Hebbian update rule (bottom). D: Accuracy
of each model over training epochs (top) and trial-averaged hidden unit activ-
ity in each context. Points lying on the diagonal correspond to neurons that
are active to the same extent (on average) in both contexts.

variables that selectively allow the propagation of task relevant information.

To demonstrate that this coding scheme is sufficient for multitask learning, we

set the context weights by hand and show that it allows the network to avoid

catastrophic forgetting even under the blocked schedule (Fig. 4.5D).

While the hand-crafted context weights prevent catastrophic forgetting in

the interleaved setting, the question of how such a gating scheme can be learned

in the blocked case remains unanswered. We hypothesised that an associative

(or Hebbian) learning rule, in which simultaneous activation of cells results in

strengthened synaptic weights, would lead to an association between task rel-

evant hidden units and the currently active context. Conversely, hidden units
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carrying task-irrelevant information would be anti-correlated to the active con-

text and thus their weights would be weakened. To test this hypothesis, we em-

ployed a variant of Hebbian learning called the Subspace Learning Algorithm

(SLA) [167]. On each trial, we apply both a standard SGD update to learn the

task and a Hebbian update to learn the context weighting:

�wi = ⌘x
(h)
i(t)[x

(in)
t �Wx(h)],

where x(h) = WTx(in) is the input to the hidden layer before the ReLU non-

linearity is applied. Similarly to the Generalised Hebbian Algorithm (GHA),

SLA learns the principal subspace of the input data. If the context signal is

sufficiently large, one of the first eigenvectors will correspond to the context

variance in the input. However in the case of GHA, since it learns the principal

components, this variance will be represented in a single basis vector, conse-

quently affecting only a single hidden neuron. The SLA learns the same sub-

space but on a randomly rotated basis, which distributes the context variance

and leads to the desired anti-correlated weight structure. We have found that

similarly to the manually gated network, the SLA network assigned a subset

of hidden units to each context and therefore did not suffer from catastrophic

forgetting under blocked training (Fig. 4.5D).

Expectation of correlated input impairs interleaved performance

While context-modulated gating protects against catastrophic forgetting

and results in maintained task performance under both interleaved and blocked

training, humans find interleaved training harder. One possibility that we intro-

duced in section 2.5 is that the interleaved setting might predispose subjects to

a simpler model structure where the decision boundary is shared between the

two gardens. We propose that a second possibility is that humans may have an

expectation, based on natural statistics, that task identity changes slowly over

time. Since the tree background can be directly observed by the subjects, this

implies that they assume that the true context is connected to the background

in a stochastic manner. In this case, the true context is a latent state variable

that needs to be inferred from the observation. On a computational level, this

task can be formalised as inferring the true task identity in a Hidden Markov
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Figure 4.6: Expectation of correlated input and sluggish network results. A,
Synthetic data generated from a HMM, where the two colours correspond to
the two possible contexts. With increasing probability of self-transitions p,
the latent states are increasingly auto-correlated. B, Using a high value of
p, the decoded state is smoothed relative to the observed state. C, Choice
probability plots under interleaved training for the Hebbian (SLA) network
and the Hebbian (SLA) network with time-averaging over the context unit.

Model (HMM), where a prior expectation of slowly changing context translates

to a high prior probability for self-transitions (Fig. 4.6A). This ‘sticky’ prior

uses information from previous trials and smooths the observed transitions in

the observations (Fig. 4.6B).

In our ANN model, we have incorporated the idea of slowness or stickiness

through a temporal smoothing of the context units’ activity across trials, as

suggested by Földiák, 1991 [168]. This smoothing led to reduced performance

on interleaved data and the observed intrusion of irrelevant dimensions, sim-

ilar to what has been observed in humans (Fig. 4.6B). Note that the model

fits use a variant of the model where the activity of the context unit was an

explonential moving average (EMA) of the context input, and the SLA rule

was replaced with a simpler variant called Oja’s rule, applied solely between

the context and the hidden units. To explain the relative benefits of blocked

over interleaved learning seen in humans, we re-analysed data from Flesch et

al., 2018 [74]. We quantified how well networks with and without gating and

smoothing procedures could explain human choice patterns. We have found

that the network with the addition of the Hebbian mechanism and slow con-

text prior provided a better explanation of the data than its vanilla counterpart

(Fig. 4.7).

Our mechanistic model explains the observed advantage of blocked over

interleaved learning in humans, using insights from neural network research
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Figure 4.7: Modelling the benefit of blocked over interleaved training observed
in data from human participants. A, Test phase accuracy. Humans perform
better under blocked compared to interleaved training, while the baseline
model performs better under interleaved training, due to catastrophic forget-
ting. Our Hebbian network with time-averaged context units performs better
under blocked training. B, Sigmoidal fits of choices made by human partici-
pants, the baseline network, and our network. Our network recreates the in-
trusion of irrelevant dimensions observed under interleaved, but less so under
blocked training. Analysis performed by Timo Flesch, figure reprinted from
Flesch & Nagy et al., 2023. [59]

to demonstrate a biologically-plausible approach for acquiring orthogonal task

representations. Furthermore, we have proposed a key difference in the as-

sumptions underlying the learning strategies of humans as opposed to standard

ANN learning algorithms and validated our approach by fitting the network

responses to human choice data. Our findings provide novel insights into the

learning mechanisms of artificial neural networks and puts forward a specific

mechanism for continual learning in humans.
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Chapter 5

Summary and conclusions

In this thesis, we aimed to provide a computational level account of long-

term memory in humans and other intelligent agents operating under similar

resource constraints. Our analysis was based on the premise that a primary

role of memory is in enabling the brain to predict future sensory inputs. A key

piece of this challenge is to extract the information needed to construct and

update an internal model of the environment, which has been identified as the

main goal of semantic memory.

In the first study, we aimed to demonstrate why an episodic memory system

is necessary for a learning agent and how it complements the semantic memory

system. We argued that online structure learning in open-ended model spaces

results in either tracking a possibly infinite number of competing models or

retaining the entire observation history, none of which is feasible for a bounded-

resource memory system. On two simple model systems we demonstrated that

i) a semantic-only learning agent under resource constraints is biased towards

its current model estimate as evidence for alternative model structures is lost

upon incorporating observations into the posterior, ii) the addition of a small

episodic buffer to the semantic-only learning agent can effectively circumvent

this challenge of online model selection by allowing statistical power of obser-

vations to accumulate, iii) the beneficial effect of the episodic buffer increases if

episodes that have large information content regarding the posterior are prefer-

entially retained, both learners are sensitive to the order in which observations

are presented, exhibiting a qualitatively similar pattern to human subjects in

the experiment of Flesch et al.[74].
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In the second study, we examined the opposite perspective, investigating

how semantic memory can aid the functioning of episodic memory. We have

demonstrated that casting the compression of episodic memories in the nor-

mative framework of rate distortion theory and exploiting the probabilistic

generative model of the environment maintained in semantic memory for gen-

erative compression of episodes results in systematic compression artefacts that

are also characteristic of human memory distortions. Semantic compression

therefore offers a unifying explanation for a wide range of memory distortions

observed in the experimental literature. Specifically, we demonstrated on nat-

uralistic domains of chess positions, human drawings and natural text that

semantic compression predicts i) increasing recall accuracy with increasing do-

main knowledge of the subject and increasing congruence of observations with

natural statistics ii) gist-based distortions in recall and recognition where low-

level details of the observation are resampled in a way that is consistent with

high-level latent variables and that iii) progressive loss of episodic detail from

memory traces as the rate distortion trade-off controlled by the Lagrange mul-

tiplier � is varied, consistent with forgetting in humans as the interval between

presentation and recall increases.

Finally, we have extended our computational and algorithmic level analyses

to the question of how these algorithms can be implemented in the brain and

artificial neural networks. We implemented semantic compression and specifi-

cally movement along the rate-distortion curve using a hierarchical generative

model and demonstrated that at higher levels in the hierarchy, where the ob-

servation is compressed at a lower rate, texture-family relevant information

is maintained while sample-specific information is lost. We used these results

to model measurements from the macaque visual cortex where it was found

by Ziemba et al. [125] that sample identity is easier to decode than texture

family from V1, whereas this relation reverses in V2. In a separate artificial

neural network model, we have demonstrated that task representations can

be partitioned in a context-modulated gating scheme, which makes the net-

work robust to blocked training. We have shown that this gating scheme can

be learned in the same context-switching experiment as in the first study if

context neurons are associated with hidden neurons carrying context relevant

information by the addition of a Hebbian learning rule called the Subspace
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Learning Algorithm. We further demonstrated that an expectation of slowly

changing or auto-correlated context, implemented as time averaged context

unit activity in the network, leads to the intrusion of context-irrelevant infor-

mation in the interleaved setting and can explain the order sensitivity observed

in human data.
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Appendix A

Supplementary information

A.1 Episodic memory

A.1.1 Inference and learning in mixture of Gaussians

Notation

T is the number of observations, K is the number of components in the

mixture, z is a one-hot binary vector, �k are the prior assignment probabilities.

Due to the graphical model of the Gaussian mixture, the likelihood fac-

torises according to:

p(D, µ, z) =
TY

i=1

p(xi|µ, zi) p(µ|z)p(z)

Inference of assignments with unknown parameters

After observing the first data point x0,

p(x0, µ, z) =
KY

k

N (x0|µk, �k)
zk · N (µk|µ0, �0) · �k

Where we can get the posterior over assignments by using the definition of

conditional probability and marginalising over µ:

p(z|x) = p(x, z)P
z
p(x, z)

=

R
p(x, µ, z)dµP

z

R
p(x, µ, z)dµ
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If we then substitute in the full joint distribution we get

p(z|x) =

R KQ
k
N (xi|µk, �k)zk · N (µk|µ0, �0) · �kdµ

P
z

R KQ
k
N (xi|µk, �k)zk · N (µk|µ0, �0) · �kdµ

=
N
D

Looking first at the numerator

N = �k

Z
dµ1...

Z
dµnN (xi|µ1, �1)

z1N (µ1|µ0, �0)...N (xi|µK , �K)
zKN (µK |µ0, �0),

we have to multiply Gaussians in each dimension, which result in the same

parametric form,

N (x|µ, �)N (µ|u0, �0) = c · N (µ|µ0
, �

0),

but with new parameters

c = N (x|µ0,

q
�2 + �

2
0); µ

0 =
µ0�

2 + x�
2
0

�2 + �
2
0

; �0 =
��0p
�2 + �

2
0

.

We may then notice that we only have to take integrals of Gaussian pdf-s

multiplied by the normalising constants ck, therefore the result can be written

simply as

N = �
K

⇢
c1 z1 = 1
1 z1 = 0

...

⇢
cK zK = 1
1 zK = 0

= �
K

KY

k

c
zk
k ,

and consequently the full fraction is:

p(z|x) =

KQ
k
c
zk
k

P
z

KQ
k
c
zk
k

Parameter learning

The posterior over the Gaussian means is

Pm(µ|x) =
Pm(x|µ)Pm(µ)R
Pm(x|µ)Pm(µ)dµ

,

where for k = 1 and Gaussian priors we again only have to multiply Gaussian

pdf-s and the posterior is the same form but with updated parameters (con-
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jugate prior). If k > 1, then we may note that the result takes the form of a

mixture of such conjugate updates

Pm(µ|x) =

Pm(x|µ)z }| {
KX

k=1

1

K
N (x|µk, �)

KQ
l=1

N (µl|µ0, �0)

R KP
k=1

1
KN (x|µk, �)

KQ
l=1

N (µl|µ0, �0)dµ

.

As the number of observations increases, the number of terms in the posterior

grow exponentially as K
T , however each term can be computed analytically.

Therefore we can apply a Rao-Blackwellised particle filter, where we maintain

a fixed number of likely assignments (particles) but for each assignment we can

perform analytical updates along the remaining dimensions of the posterior.

A.2 Semantic compression

A.2.1 Chess-VAE

We have trained a beta-VAE on games downloaded from the FICS (Free

Internet Chess Server) Games Database, containing hundreds of thousands

of recorded online games. Chess configurations were represented as a one-hot

vector for each one of 64 squares on the chessboard, with each 13 dimensional

one-hot vector specifying the chess piece or the lack of a chess piece in that

square. The decoder output was a categorical distribution for each square,

which represented the probabilities of possible chess pieces on the particular

position. Both the encoder and decoder of the chess-VAE consisted of two

dense layers with 3000 units and sigmoid nonlinearity, followed by a linear

transformation. The prior over the continuous 64 dimensional latent space was

a Normal distribution with an identity covariance matrix. Reconstruction was

modelled by conditioning the model on a chess configuration, inferring the

latent representation, then taking the MAP reconstruction of the decoder.

Since the goal was to demonstrate robust qualitative effects resulting from

the theoretical framework, hyperparameters of the model were chosen so that

reconstructions would fall in a regime comparable to the experimental data

as opposed to fine tuning them for an accurate match. Beta is a central free
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hyperparameter for the model, which was chosen to be 0.0001 so that the ‘ex-

pert’ model could reproduce the state of around 90% of squares correctly in

the MAP estimate. Decreasing beta further did not result in flawless recall,

presumably due to capacity limitations in the encoding and decoding transfor-

mations. Patterns in the presented results were relatively robust to changes in

parameter � but increasing it by orders of magnitude causes both the overall

accuracy and difference between the random and game conditions to decrease.

Varying the size of latent space had similar effect to varying � as it modulates

the capacity of the latent space. Decreasing the hidden layer widths from 3000

led to qualitatively similar results but with performance in the game board

condition saturating at a lower level of around 15 successfully reconstructed

pieces in the case of 1000 units and 10 in the case of 500 units. Doubling the

number of training steps did not noticeably change the resulting reconstruc-

tion accuracies. Separate training and test sets were formed from all the board

positions from 3000 games of the FICS Games Database. Different levels of

skill were modelled by using different sized training sets: game positions were

subsampled to 0.1%, 1%, 10%, and 90% of the full dataset. Training set sizes

corresponding to various skill levels were also not precisely calibrated to ex-

perimental data but set to what we determined to be sensible values so that

amateur players would only observe a few games and expert players would see

a sufficient amount to reconstruct with comparable accuracy to the experi-

ments. Remaining set sizes were chosen to span orders of magnitude between

these two extremes. For training we have used Adam with a learning rate of

10�4 and a batch size of 65.

The test configurations were constructed as in Chase et al. [169]. ‘Game’

configurations were taken after either the 21st or the 41st move in games

from a separate test set. ‘Random’ configurations were produced by shuffling

the pieces across occupied board positions of a game setting. The number of

pieces on the board were not fixed in the dataset and could vary across trials.

We have followed the accuracy evaluation method proposed in the Gobet and

Simon paper, where the number of correct pieces on a reconstructed board is

counted.
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A.2.2 Text-VAE

The beta-VAE constructed to learn the statistics of natural text was similar

to the chess-VAE: we used an encoder and a decoder with two dense layers with

2000 hidden units per layer followed by sigmoid nonlinearities. Activations, z,

in the last hidden layer of the decoder are used to generate words, X indepen-

dently through a linear transformation and a softmax nonlinearity according

to

ei = exp(�zTRxi + bxi)

p✓(xi|z) =
eiP|V |
j ej

p(X|z) =
NY

i

p✓(xi|z),

where R is a |z|⇥ |V | matrix that acts as a semantic word embedding, organis-

ing words into a low dimensional continuous vector space such that similarity

in this space reflects semantic similarity between the words. The model had a

continuous latent space with a diagonal Gaussian prior in 100 dimensions. This

architecture (with minor differences) has appeared in the machine learning lit-

erature previously as the Neural Variational Document Model (NVDM) [108].

The factorisation assumption, which formulates the generation of multiple-

word text as an independent process, greatly simplifies training but the con-

sequence is that the same word can be generated multiple times in a synthe-

sised text. Since this is a purely computational simplification that is clearly

detrimental to performance in the world list recall task, we constrained recon-

structions such that distinct words had to be generated. For training on both

Wikipedia and the synthetic dataset described below, we have used Adam with

a learning rate of 10�5 and a batch size of 100. We have chosen these hyperpa-

rameters based on the Miao et al. [108] paper, adjusting them for the fact that

they have trained their model on significantly smaller datasets (vocabulary

sizes of around 2000 and 5000 as opposed to 50000). The large dataset was re-

quired so that we have a sufficiently good approximation of language statistics,

which we assessed through testing whether the associations that the original
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DRM lists rely on are reliably represented in the model. Consequently we have

increased the training set to the extent that was computationally feasible for

us to train. Beyond these considerations no further adjustment of the model

parameters was required and results are presented without fine tuning of the

parameters. Due to the computational cost of training the model, we have not

explored perturbations of hyperparameters extensively. We have calibrated �

values such that the reconstruction probabilities for studied and critical lure

words were approximately the same, which is what was observed in the original

DRM experiment.

To control for the mismatch between the statistics of the training corpus

and the natural vocabulary humans experience over a lifetime, we only used

the word lists from the original DRM article which fulfilled the criterion that

the lure word had at least 2000 occurrences in the training set. Words that

appeared less than 100 times in the training set were deleted from the lists,

and if these manipulations resulted in a list that was shorter than 12 words

then the entire list was removed. According to these criteria we included 10

of the original word lists in the analysis (high, rough, mountain, music, black,

man, foot, king, river, soft). As an illustration of the similarity of associations

between the model and human data, 15 closest associates of the word ‘music’ in

the model are ‘musical, album, arts, songs, sounds, pop, art, instrument, sound,

musicians, progressive, disambiguation, label, composers, string ’ whereas the

corresponding DRM list is: ‘jazz, horn, concert, orchestra, rhythm, sing, piano,

band, note, instrument, art, sound, symphony, radio, melody ’.

In order to mitigate variability in the averages due to i) the low number of

word lists and ii) mismatch between the statistics of the Wikipedia training

set and natural text, we also built a synthetic dataset so that the performance

of the text-VAE can be explored under well controlled statistics. We generated

synthetic text using an artificial vocabulary and a Latent Dirichlet Allocation

(LDA) topic model. The LDA generative model used a synthetic vocabulary

of 1000 words with a word concentration parameter 0.1, and 10 topics with

concentration parameter 0.1. These parameters were chosen such that a t-SNE

embedding would largely be able to separate the main topics in each docu-

ment but not perfectly. We sampled 20000 documents from the LDA models

to use as a training set. In the original memory experiment, word lists were
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generated by asking subjects to list their first associates to the presented lure

word. Analogously, for the artificial vocabulary we trained a separate model on

synthetic data generated from the LDA model and computed the 15 most sim-

ilar associates based on the learned embedding matrix R. We generated such

DRM-like word lists for each word in the vocabulary that occurred at least 500

times in the training set, but discarded lists that became shorter than 12 after

removing infrequent (less than 500 occurrences) words. Note that this method

can also be used to construct new DRM word lists based on the model trained

on Wikipedia.

A.2.3 Sketch-VAE

To obtain a generative model for hand-drawn sketches we used the sketch-

RNN VAE architecture [109] that was developed specifically as a generative

model for sketches and is able to capture sequential dependencies in the data.

Sketch-RNN represents sketches as sequences of pen strokes, which are encoded

into the latent representation through a bidirectional RNN. The output of this

network then parametrises a Normal distribution over the latent space. The

decoder consists of an RNN conditioned on the latent vector and preceding

strokes, outputting the parameters of a mixture of Gaussians which generates

the next pen movement.

In order to be able to relate our analysis to the distortions observed

in the Carmichael experiment, we have used hand drawn sketches from the

QuickDraw dataset Ha & Eck [109], consisting of a rich set of labelled draw-

ings depicting 345 common object categories. The experiment used ambiguous

drawings that could plausibly belong to multiple categories; hence we selected

category-pairs that contained a substantial number of visually similar exem-

plars. Although the QuickDraw dataset contains rich naturalistic samples from

every category, characteristics of recording the doodles preclude a large num-

ber of object pairs from the analysis. The QuickDraw data was recorded as

part of a web browser game, where subjects had 20 seconds to draw an ex-

emplar of a given category. However, if the drawing gets to a stage where an

object classifier is able to recognise it as belonging to the provided category,

a new trial is initiated. As a result, the data set contains a large number of
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unfinished drawings. Another limitation of the data set is that participants

tend to draw prototypical exemplars of the category thus limiting the variance

of the samples compared to all possible ways of drawing the object that would

still be easily recognisable by human observers. This means that some of the

designs appearing in the Carmichael experiment are not present in the data

set and thus the model is oblivious to their interpretation. In total we have se-

lected five object pairs (eyeglass-dumbbell, chair-bed, wheel-fan, moon-banana,

pizza-wheel) and the model was trained separately for each object category, on

a training set of 75000 samples per category. The reconstructions were based

on samples from a separate test set. We have modelled the effect of present-

ing the label by conditioning the category specific generative model on the

ambiguous image and using it to generate a reconstruction.

Most parameters of the sketch-rnn model are determined by the data statis-

tics and only a small subset of the parameters is available for fine tuning. These

parameters have been explored in the original publication of the paper [109].

We have only explored the rate distortion parameter �. The value of � for

different time delays were chosen so that the variance in reconstructed im-

ages was roughly comparable to that observed for humans in the experimental

literature, as judged by the authors.

In the quantitative analysis of feature rescaling, following Hanawalt et al.

[110], we have measured the proportion of the length of the drawing and the

length of the connecting line for conditional reconstructions for 50 randomly se-

lected samples of the test set. The length of the drawing was measured between

the widest extent, excluding any stems in the case of glasses. The connecting

line was defined as the distance between the two circular features at the points

of intersection with the connecting line. We have only included samples where

both the circular features and the connecting line was recognisable for all re-

constructions.
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Thesis summary

Learning a simplified internal model of the environment and using it for predic-

tion, perception and decision making is a crucial component of the human brain’s

ability to adapt to environmental demands. Maintaining general world knowledge

in the form of a probabilistic generative model of the environment has been identi-

fied as the main goal of semantic memory, one of the two complementary memory

systems comprising long-term memory in humans. In contrast, the second memory

system called episodic memory aims to retain a detailed representation of environ-

mental variables during specific events. This thesis aims to provide a computation

level account of long-term memory in humans and other intelligent agents operat-

ing under similar resource constraints, focusing on the interactions of the semantic

memory and episodic memory systems.

In the first study, I aim to understand why an episodic memory system is a

necessary ingredient for learning agents and propose that it is required to resolve a

fundamental challenge of online model selection under resource constraints.

In a second study, I explore how the probabilistic generative model maintained in

semantic memory can support the episodic memory system. I propose that utilising

the probabilistic model for generative compression, a recently developed approach

in the field of machine learning, enables e�cient storage of episodic memories. Fur-

thermore, I demonstrate that such semantic compression parsimoniously explains

a wide range of memory distortions that have been observed in the experimental

literature on human memory.

In the final two studies I explore how some of the above computational level ideas

can be implemented in neural networks. In the first, we propose that implementing

semantic compression with hierarchical generative models can explain features of

multi-unit recordings of neural activity in the visual cortex of macaques. In the

second, I propose a scheme for how partitioned task representations can be stored

in artificial neural networks, enabling maintained accuracy in the setting known as

continual learning in the machine learning literature as well as applying this model

for explaining puzzling features of a behavioural experiment in humans.



Összefoglaló

A környezet egyszerűśıtett belső modelljének elsaját́ıtása, illetve predikcióban,

észlelésben és döntéshozatalban való felhasználása az emberi agy környezeti igények-

hez való alkalmazkodási képességének alapvető komponensei. A világról való általános

ismeretek a környezet valósźınűségi generat́ıv modelljének formájában való fenn-

tartása a szemantikus memória fő célja, amely az emberi hosszú távú memóriát

alkotó két memóriarendszer egyike. A másik rendszer, az epizodikus memória, a

környezeti változók részletes reprezentációjának megtartását célozza. A disszertáció

célja, hogy az emberek és más, hasonló erőforrás-korlátozások mellett működő intelli-

gens ágensek memóriarendszereinek komputációs szintű léırását adja, a szemantikus

memória és az epizodikus memóriarendszerek kölcsönhatásaira összpontośıtva.

Az első tanulmányban arra törekszem, hogy megértsem, miért szükséges az

epizodikus memóriarendszer a tanulási ágensek számára, és azt vetem fel, hogy

nélkülözhetetlen az online modellválasztás egy alapvető kih́ıvásának erőforráskorlátok

melletti megoldásához.

A második tanulmányban azt vizsgálom, hogy a szemantikus memóriában fenn-

tartott valósźınűségi generat́ıv modell hogyan tudja támogatni az epizodikus memória-

rendszert. Megmutatom, hogy a valósźınűségi modell felhasználása az epi-zódok

generat́ıv tömöŕıtésére, amely egy a gépi tanulás területén nemrégiben kifejlesztett

megközeĺıtés, lehetővé teszi az epizodikus emlékek hatékony tárolását. Továbbá

demonstrálom, hogy ez az ú.n. szemantikus tömöŕıtés egységeśıtő magyarázatként

szolgál az emberi memória ḱısérleti irodalmában megfigyelt szisztematikus memória-

torzulások széles skálájára.

Az utolsó két tanulmányban azt vizsgáljuk, hogy a fenti számı́tási szintű ötletek

némelyike hogyan valóśıtható meg neurális hálózatokban. Az elsőben megmutatjuk,

hogy a szemantikus tömöŕıtés hierarchikus generat́ıv modellekkel való megvalóśıtása

magyarázni tudja makákók látókérgében mért neurális aktivitás egyes jellemzőit. A

másodikban egy sémát javasolok feladatok reprezentációinak mesterséges neurális

hálózatokban való struktúrált tárolására, lehetővé téve a gépi tanulás irodalomban

folyamatos tanulásként ismert probléma feloldására egy konkrét ḱısérleti környezet-

ben, amelyet felhasználunk ugyanebben a ḱısérletben az emberi tanulás jellemzőinek

modellezésére.
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