
1. Introduction

1.2 Memory as knowledge: semantic memory

Maintaining knowledge of the environment is a crucial responsibility of hu-

man memory, and this responsibility rests primarily with the semantic memory

system. This section aims to provide an overview of key ideas from prior re-

search that can serve as a foundation for a normative account of how this

responsibility can be met. First, we will outline the reasons for why knowledge

representation in the brain, particularly in semantic memory, should be in the

form of a probabilistic generative model. Then, we briefly introduce the the-

oretical foundations of probabilistic models, including graphical models and

probabilistic programs. We show how this approach addresses many of the key

challenges in cognition, including perception as unconscious inference. Finally,

we examine how learning, or the construction of a representation of the envi-

ronment over an organism’s lifetime, can be achieved within the framework of

probabilistic inference.

1.2.1 Knowledge representation

How can knowledge be represented in a physical system such as the

brain? We have argued that to perform predictions, complex organisms shape

part of their brain into an artefact that in some sense mirrors the envi-

ronment. Human-made prediction devices, for example, orreries such as the

Antikythera mechanism serve as intuitive examples of this notion of mirroring.

The Antikythera mechanism is an ancient device from the 1st or 2nd century

BCE and is considered one of the first computers. The device had multiple

dials representing observable astronomical information including the positions

of the Sun and Moon, the moon phase, eclipses, and possibly the locations

of planets. By turning the hand crank on the side of the device, interlocking

gears within the mechanism moved the dials to reflect a future state of celes-

tial objects, allowing the operator to predict future events, such as the date of

the next eclipse, by reading off the dials. The Antikythera device is a physical

system, parts of which (dial positions) map onto important features of another

physical system (celestial body locations), and crucially, these mappings are

preserved under certain transformations (e.g. time evolution). While a precise

definition of the concepts of representation and computation are difficult ques-
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Figure 1.4: Representing knowledge of the environment in physical systems.
The orrery on the right serves as a model of the solar system. The states of the
real system, Wi, correspond to representational states of the orrery, Li, and
this correspondence, S, is maintained over the time evolution of the systems,
allowing the user to predict the relative locations of the celestial bodies in the
future.

tions [12, 13], this example intuitively illustrates how a physical system can

represent knowledge regarding an external physical system (Fig. 1.4).

Note that to be useful for prediction, the variables on the dials had to

transform in the same way as the positions of the celestial bodies, even though

the mechanism in the former case was a system of gears whereas in the former

it was the force of gravity between planets and stars. This raises the impor-

tant question of what are the limits of such representation. Which kinds of

mechanisms can model which other kinds of mechanisms? Perhaps most im-

portantly from our point of view, which kinds of systems can be modelled by

neurons? One of the most important discoveries of the 20th century is that

surprisingly, all ways of defining effective computation led to the same set of

functions. The definition that most closely aligns with computation with phys-

ical devices was developed by Turing, using abstract machines that process

discrete symbols arranged on an infinite tape using a set of defined instruc-

tions known as Turing machines. Inspired by his work, McCulloch and Pitts

[14] analysed idealised neural networks and suggested that recurrent versions

of these networks coupled with memory could calculate the same functions as

Turing machines. Although this was just a conjecture 3, such a construction

was developed much later by others [16]. Turing also demonstrated that it was

possible to build a universal Turing machine (UTM) that could simulate any

other Turing machine by encoding its instructions on the tape. These results

led to the formulation of the Church-Turing thesis, which asserts that any in-
3It is a common misconception that they have proved this, for details see Piccinini, 2020

[15].
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tuitively computable function is computable by some TM and consequently

by any other sufficiently intricate (Turing complete) mechanism. This notion

of computational universality, the independence of the computation from the

concrete physical mechanism is the basis for the existence of software sepa-

rately from its hardware level implementation. Furthermore, it suggests that

the brain being made of neurons can be consistent with it performing computa-

tions that are easier to understand in formal systems adapted to the high-level

challenges that it faces, providing the basis for a top-down analysis.

Logic

The universality of computation suggests that we may begin our analysis

in a framework ideally suited to the problems of representing knowledge in

a format that can support predictions, simulations and reasoning. We start

with logic, the system that describes the laws of sound reasoning that origi-

nated with Aristotle and was refined by many others [17, 18]. Specifically, we

introduce a simple variant called propositional logic. To construct a model in

propositional logic, we have to specify the distinct states of the system. We

can decompose these states using state variables (atomic propositions). The

full model can be encoded as a truth table, where columns represent the atomic

variables in the system and the rows list all possible combinations of values for

those variables. Each row in the truth table represents a state of the system,

with the values for the atomic variables given in the corresponding columns.

The last column of the truth table defines whether the combination of truth

values represented in the row is a possible state of the system (see Fig 1. for

an example).

In order to be able to make inferences in a logical system represented by a

truth table, we can simply cross out all states that do not match the query or

are not possible. For example, if we make the query: ‘If the patient is coughing

but doesn’t have the flu, is it TB? ’, we need to cross out all states where

cough 6= 1 or flu 6= 0 and all states where possible 6= 1 (Fig. 1.5). The only

possible state left is row 3, where TB = 1 and therefore the answer to the

question in this simple model is yes.

The first issue with this method becomes apparent if we start refining the

model by adding new variables: the number of rows scales exponentially with
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Cough Flu TB Possible
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

Cough Flu TB Possible
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

Figure 1.5: Truth tables and inference in a toy diagnostic model. Left, the
original truth table. Right, the truth table with lines incompatible with the
query ‘If the patient is coughing but doesn’t have the flu, is it TB? ’ crossed
out.

the number of variables. This makes both representing the table and answering

queries very cumbersome and therefore it is useful to introduce logical oper-

ators. Each operator is defined by a smaller table called a conditional truth

table (Fig. 1.6). Using these CTTs to decompose the full truth table makes the

definition of the model much shorter. For example, using logical operators, the

truth table in Fig 1. can be described simply by:

(flu _ TB) $ cough

Moreover, these operators enable more efficient means of performing inference

than the method of crossing out lines in the truth table:

A$ B,A ` B

A _B,¬A ` B

For example, to answer the question ‘If the patient is coughing but doesn’t have

the flu, is it TB? ’, or in logical notation:

cough ^ ¬flu ` TB,

we can use the above two inference rules by substituting into the first rule,

cough$ (flu _ TB) , cough ` (flu _ TB),

and then substituting the above result into the second inference rule, we get:

flu _ TB,¬flu ` TB.

12



1. Introduction

A B A $ B
1 1 1
1 0 0
0 1 0
0 0 1

A B A _ B
1 1 1
1 0 1
0 1 1
0 0 0

Figure 1.6: Conditional truth tables for the IFF operator (A $ B) and the
OR operator (A _ B).

Therefore, we can conclude that in this situation, TB is true.

Despite the introduction of these logical operators, the expressive power of

propositional logic remains limited. However, let us consider a different kind

of problem first. Assume the question was ‘If the patient is coughing, does he

have TB? ’. If we attempt to use the method of crossing out incompatible and

impossible states of the world, we are left with only three possible states: two

in which the patient has TB and one in which he does not. This means that

there are queries which are undecidable in the system and in such cases, logic

fails to provide a useful answer.

Undecidability and degrees of belief

Unfortunately in practical situations, the majority of queries that the

agent is concerned with will fall into the category of undecidable or uncer-

tain. However, there is a simple modification we can make to allow the system

to deal with uncertain knowledge: we can allow the ‘possible’ column to take

on non-binary values ranging from zero to one, corresponding to the agent’s

degree of belief or plausibility that the world is in that state. How should the

agent choose these numbers? Two well-known arguments exist regarding how

degrees of belief should be consistently assigned to states of the world.

First, Cox [19] attempted to demonstrate that if an agent’s degrees of be-

lief are expressed as real numbers and satisfy axioms encoding common sense

requirements, such as the requirement that different ways of arriving at an an-

swer from the same information should lead to the same outcome, then these

beliefs must adhere to the axioms of probability theory. Therefore, in extend-

ing logic to handle uncertainty, the degrees of belief should be chosen such that

they satisfy the rules of classical probability theory. Cox’s theorem can be seen

alternative axiomatisation of probability theory, equivalent to Kolmogorov’s
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axioms but with a different motivation. In this correspondence with probabil-

ity theory, queries are formalised as the calculation of conditional probabilities,

where the condition defines the query. For example, our query in the diagnosis

system would correspond to the computation of P (TB|cough,¬flu). It can be

shown that the computation of conditional probabilities is equivalent to the

method of crossing out the incompatible rows of the truth table and renormal-

ising the remaining rows to sum to unity.

The second argument, called the Dutch book argument [20], assumes that

the agent is willing to make bets according to his degrees of belief. The ar-

gument shows that if these degrees of belief fail to follow certain consistency

rules, there will exist a set of bets that the agent would accept as fair, even

though it would guarantee a loss. Such a set of bets is called a ‘dutch book’

by professional bookmakers. As in Cox’s theorem, the consistency rules that

degrees of belief have to satisfy correspond to the rules of classical probability

theory.

Taken together, these two arguments are key pieces in motivating the use

of probability theory as a normative framework for understanding human cog-

nition. In particular, they suggest that the agent’s internal models should be

formalised as probabilistic models of the environment with the probabilities

corresponding to how plausible the agent considers each state to be. The

agent can query its representation through computing conditional probabil-

ities, which corresponds to probabilistic inference. We will discuss in more

detail how various cognitive functions can be cast as probabilistic inference in

section 1.2.2, but first, we return to the problem of expressivity.

Graphical models

Joint probability tables, the probabilistic extensions of truth tables suffer

from the same ‘curse of dimensionality ’ as their counterparts from logic, that

is, the problem of exponential scaling with the number of variables. Similarly

to logic, there are extensions of probability theory that exploit compositional-

ity to increase the expressivity of probability tables. Analogously to the way

that truth tables can be decomposed using operators defined by conditional

truth tables, joint probability tables can be decomposed using smaller condi-

tional probability tables. This trick leads to the concept of directed graphical
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models in probability theory. In graphical models, each variable in the model

corresponds to a node in a directed acyclic graph (DAG), where the parents of

each node are the variables which are included in the conditional probability

table for the variable represented by the node. In addition to allowing for a

more compact representation of the joint probability table, graphical models

also enable inference algorithms that make certain kinds of queries such as

statistical dependencies between the variables more efficient to compute.

Since graphical models play a central role in probabilistic models of cogni-

tion, we consider them in more detail. In order to see how graphical models

enable a more compact representation of the joint distribution, we first use the

chain rule for probabilities to factorise it for an arbitrary ordering X1, X2, .., Xn

of n random variables as

P (x1, x2, . . . , xn) = P (x1|x2, . . . , xn)P (x2|x3, . . . , xn) . . . P (xn).

If the conditional probability of a certain variable Xi is only dependent on a

subset of the variables that it is conditioned on, and we call this subset pai

(the Markovian parents of Xi) then we have

P (xi|xi+1, ..., xn) = P (xi|pai).

This means that the joint distribution can be written as

P (x) =
nY

i=1

P (xI |pai),

which can greatly reduce the information needed to specify it (that would

otherwise require 2n entries even for binary variables) by decomposing it into

smaller distributions. Furthermore, we can construct a DAG that satisfies the

same child-parent relationships with each variable having a corresponding node

and each conditional dependence a directed edge. We call such a graph G a

graph representation of distribution P. We introduce the following notation for

independence between variables

X ? Y , P (x) = P (x|y) , P (x, y) = P (x)P (y),
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Figure 1.7: An illustration of the explaining away effect for probabilistic mod-
els. Left: We suppose that burglaries and earthquakes are unrelated and rare,
but both cause the house alarm to signal. It follows that being informed that
the alarm went off increases our concern about both an earthquake and a bur-
glary being in the house. However, if, in addition to hearing the alarm, we
also feel the ground trembling, it makes us less likely to think that we have
also been the victims of burglary. Right: Direct observation of latents is not
necessary for them to become dependent - if our model also includes the fact
that valuables go missing after a break-in, then noticing both the alarm going
off and the disappearance of possessions is enough to infer the presence of the
thief and conclude that there was probably no earthquake.

and for conditional dependence

X ? Y |Z , P (x|z) = P (x|y, z) , P (x, y|z) = P (x|z)P (y|z).

The graph representation provides an economical encoding of the inde-

pendence relations or correlation structure of the distribution. It also enables

these relations to be read out via graph-search algorithms instead of algebraic

methods, and can be given a causal interpretation. We say that probabilistic

influence can flow from variable X to variable Y through a set of variables Z if

X 6? Y |Z . Independencies can be read off the graph representation by check-

ing whether there exists a trail (a path where the edges can point in either

direction) through which influence can flow between the variables in question

[21]. The flow of influence is blocked by conditioning on nodes Z if an only if:

1. the trail contains u m v, such that m 2 Z,

2. the trail contains u m! v, such that m 2 Z,

3. or the trail contains u ! m  v such that m /2 Z and no descendants

of m are in Z,

where u,m and v are nodes in graph G. An interesting dependence relation

is made evident by these criteria, called selection bias in the statistical and
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explaining away in the AI literature. The third criteria implies that otherwise

independent parents can become correlated if we condition on their mutual

child. Informally, if we observe something that can be a cause of some other

observation, then this reduces the need for an alternative explanation. This

also happens if we don’t observe the hidden cause, but infer it from some

auxiliary observation. An illustration of this effect can be found in Fig 1.7.

While both the introduction of operators and inference rules in proposi-

tional logic and graphical models in probability theory are important con-

ceptual steps in dealing with the curse of dimensionality of truth tables and

probability tables respectively, their expressive power is still limited. Logic

has been extended into higher order logics, for example through the intro-

duction of predicates and quantifiers results in first order logic. An important

development was �-calculus, which in addition to corresponding to a higher-

order logic, has equivalent expressive power to universal Turing machines and

thereby capable of expressing any effectively computable function. �-calculus

can be directly extended to handle probabilities with the introduction of a ran-

dom sampling operator. This extension, called stochastic �-calculus, provides

the basis for a Turing-complete formalisation of probabilistic models called

probabilistic programs [22].

Probabilistic programs

Probabilistic programs provide a Turing-complete modelling language that

allows for the construction of mental simulations of any computable generative

process. Each program represents a probability distribution through the rela-

tive frequencies of its outputs when executed. Running the program simulates

the environment and results in a possible world state that is consistent with

the model’s initial conditions. Each of these output states can be considered a

sample from the distribution represented by the program and as the number

of samples grows, the relative frequencies of the outputs tend towards their

probabilities, providing a sampling or Monte Carlo representation (for more

details on sampling representations see section 1.3.1).

Similarly to directed graphical models, an important advantage of prob-

abilistic programs that they can represent causal models. They have been

proposed as a framework for formalising core human competencies such as
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intuitive physics and intuitive psychology by enabling the rich mental simula-

tions of causal processes that these require [23]. For example, intuitive physics

has been proposed to be similar to physics engines in modern video games that

are used to create environments for the players to interact with. These physics

engines contain simplified objects with properties and approximate dynamics

for updating the world state and usually also incorporate a graphics engine

that renders the 3D visual scene from the perspective of the player. This hy-

pothesis has been successfully applied in a range of human experiments [24,

25]. In relation to this thesis, probabilistic programs are important primarily as

a general formalisation of the compositionally defined, open-ended hypothesis

spaces that the human brain has to be able to navigate during learning. We

explore this view of learning as a process of finding the probabilistic program

that generates the observed data in section 1.2.3.

1.2.2 Probabilistic models of cognition

As discussed in the previous section, making inferences is a key part of

knowledge representation. Probabilistic inference has emerged as a unifying

language for modelling inference problems that arise in the fields of cognitive

science, machine learning and computational neuroscience. In this section, we

provide an overview of how important cognitive functions, such as decision-

making and perception, can be framed as probabilistic inference, supported by

the world model stored in semantic memory.

Perception as inference

A fundamental challenge for the brain is the difference between the quanti-

ties it can directly measure through sensory neurons and those that are relevant

to plans and decisions. Quantities in the former category are things like im-

pacts of photons, vibrations in surrounding air, temperature and the presence

of certain molecules, whereas the brain is more concerned with determining the

presence and properties of objects, animals, individuals, and their thoughts and

intentions. This process of inferring the latent quantities based on the directly

measurable ones was termed unconscious inference by Helmholtz [26], alluding

to the observation that introspectively we only have access to the result of
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