Knowledge representation

David Nagy davidnagy@elte.hu

Statistical learning in the nervous system
golab.wigner.mta.hu/teaching

previously

- Computation - determining the challenge: through the goals of the biological agent phrasing a mathematical model that is capable of addressing the challenge
- Algorithm - solving the challenge can be achieved in many different ways that can be weighed based on different factors

- Implementation - physical realization of the algorithm, in the case of neuroscience, based on neurons, spikes, etc

David Marr, I976

previously

sensing

sensing

sensing

sensing

sensing

goals for today

- what is knowledge?
- what are internal models?
- what are the limits of representing knowledge with neurons?
- why are we going to use probability theory as a mathematical framework in the rest of the course?

goals for today

- what is knowledge?
- what are internal models?
- what are the limits of representing knowledge with neurons?
- why are we going to use probability theory as a mathematical framework in the rest of the course?

what is knowledge?

- how do we test knowledge?

Kötelező évszámok

Öskor, ókori Kelet:

100ezer (30ezer) éve - a Homo Sapiens megjelenése
Kr. e. 3000 körül - Alsó- és Felső Egyiptom egyesülésével létrejön az ókori egyiptomi állam
Kr. e. XVIII. sz. - Hammurapi uralkodása, az Óbabiloni Birodalom fénykora
Kr. e. X. sz. - a zsidó állam fénykora Dávid és Salamon idején
Kr. e. 525 - péliuszioni csata, Egyiptom bukása (perzsa uralom alá kerül)

Az ókori Görögország:

Kr. e. XIII. sz. - a dórok támadása, a mükénéi kultúra bukása
Kr. e. 621 - Drakón írásba foglalja a törvényeket Athénban
Kr. e. 508 - Kleiszthenész reformjai Athénban, a demokrácia kialakulása
Kr. e. 480 - szalamiszi csata
Kr. e. 480 - thermopülei csata
Kr. e. 776 - az első olimpiai játékok
Kr. e. 431-404 - peloponnészoszi háború
Kr. e. 336-323 - Nagy Sándor uralkodása

Az ókori Róma:

Kr. e. 753 - Róma alapítása
Kr. e. 510 - a királyság bukása, a köztársaság kezdete
Kr. e. 367 - Sextius-Licinius-féle törvények (földtörvény)
Kr. e. 287 - megszűnik a népgyűlés határozatainak senatusi jóváhagyása
Kr. e. 264-241-az 1. pun háború
Kr. e. 218-201 - a 2. pun háború
Kr. e. 168 - a püdnai csata, Macedonia meghódítása
212 - Caracalla kiterjeszti a római polgárjogot a birodalom minden szabad lakójára
313 - Nagy Constantinus a milánói edictumban engedélyezi a keresztény vallás gyakorlását
395 - a Római Birodalom kettészakadása
476 - a Nyugat-Római Birodalom bukása

$$
1,2,3, \ldots, 100
$$

1) $\begin{array}{r}408 \\ -\quad 234 \\ \hline\end{array}$
2)

842
3) 729
$-\quad 219$

- 145

4)

$$
\text { 4) } \begin{array}{r}
675 \\
-\quad 232
\end{array}
$$

5)

$\begin{array}{r}903 \\ 8 \quad 1 \\ \hline\end{array}$
6) 673

- 528

7) $\begin{array}{r}768 \\ -\quad 237\end{array}$
8)

892
79
9) $\begin{array}{r}758 \\ -\quad 573 \\ \hline\end{array}$
10) $\begin{array}{r}604 \\ -\quad 68 \\ \hline\end{array}$

$$
68
$$

$$
\begin{array}{r}
-573 \\
\hline 12) \\
\\
\hline
\end{array} \begin{array}{r}
774 \\
\\
-556 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { 11) } \begin{array}{r}
786 \\
-\quad 471 \\
\hline
\end{array} \\
& \begin{array}{r}
-\quad 79 \\
\hline 11) \\
\\
\\
\\
\\
\\
\\
\hline
\end{array} \begin{array}{r}
786 \\
4
\end{array}
\end{aligned}
$$

9.ה Vízcseppek potyogtak a papírra. Írd be, mik lehettek az elmosódott számok!

what is knowledge?

- how do we test knowledge?
- can solve previously unseen examples (e.g. addition)
- can use dates and other knowledge for new inferences
- can answer "what if" or "what is going to happen" questions

what is knowledge?

- But we also call it knowledge if the subject
- can raw an elephant
- has a good chance of hitting a ball back with a tennis racket
- can plan quick trips within bp using public transport
- can tell you the rules of chess
- can play chess well

what is knowledge?

- taken together, we have covered a large proportion of possible tests of knowledge.
- assuming that we think of the brain as a physical system,
- how could we build a physical system that would pass these tests?
- let us look at an early example where we are interested in the movements of celestial bodies such as the sun and the moon

P3D.com

Antikythera mechanism

- we are interested in the movements of the planets, the sun and the moon
- highlight parts of the real system that are relevant from this point of view
- e.g. neglect dark matter, atmospheres of planets, inner structure of planets etc.

Antikythera mechanism

- we build a model
- a machine where the parts we have identified with relevant variables in the real system work in approximately the same way
- then, we can operate this machine to answer questions about the real system
- e.g. to predict eclipses
- what are the limits to constructing such models?

Can a machine simulate another machine?

1500 Lego, Technic parts

Can a machine compute something that no other machine can simulate?

Turing-machine

- an infinite tape with cells
- on which it can
- write symbols
- erase symbols
- read symbols
- move between cells

- end the computation
- which of these it performs at any time depends on two things:
- what symbol was read
- what state the machine is in
- where the appropriate action for each symbol - state pair is given in advance in a table

	Current state A		Current state B			Current state C			
Tape symbol	Write symbol	Move tape	Next state	Write symbol	Move tape	Next state	Write symbol	Move tape	Next state
0	1	R	B	1	L	A	1	L	B
1	1	L	C	1	R	B	1	R	HALT

TM as function

$$
\mathrm{x} \longrightarrow \mathrm{TM} 1 \longrightarrow \mathrm{f}_{1}(\mathrm{x})
$$

$$
\begin{aligned}
& \mathrm{x} \longrightarrow \mathrm{TM} 1 \\
& \mathrm{x} \longrightarrow \mathrm{f}_{1}(\mathrm{x}) \\
&\mathrm{TM}) \longrightarrow \mathrm{UTM} \longrightarrow \mathrm{f}_{1}(\mathrm{x})
\end{aligned}
$$

universal TM

There exists a universal Turing machine such that if we give it on tape

- the instructions of another Turing machine
- and its input
then the output will be the output of the given Turing machine given the given input.

$$
\exists F: F\left(f_{i}, x\right)=f_{i}(x) \forall i, x
$$

- how does this relate to the brain?
- can the same functions be calculated with neurons?
- with these machines can you calculate everything that the brain can?
- or maybe neurons know something that nothing else does?
- even something that we cannot model mathematically?

Walter Pitts

1923-1969

McCulloch-Pitts neuron

(McCulloch\&Pitts 1943)

McCulloch-Pitts neuron

> non-active
two states:

active
(McCulloch\&Pitts 1943)

McCulloch-Pitts neuron

A Logical Calculus of Ideas Immanent in Nervous Activity

a

memory?

Perceptron

$$
\mathbf{W} \circ \mathbf{n}_{1} \geq \theta
$$

Perceptron
 1957

Connectionism

universality of computation

- other general models of computation have also been developed (e.g. recursive functions, λ-calculus)
- surprisingly, it turns out that they define exactly the same functions as Turing machines
- Church-Turing thesis: anything that can be effectively computed can be computed with UTMs
- these are called computable functions
- a stronger claim is that what can be computed by any physical process can be computed by a UTM
- this is an empirical question, but there are no known counterexamples in physics (called hypercomputation)
- (e.g. quantum computers can compute the same functions but some of them faster)
- Turing-complete or universal language: a set of primitives/components that can be used to create a UTM.

internal model

environment

- model is a simplified "copy" of the original system
- that can be constructed out of cogs, transistors, or even neurons
- and in some sense mirrors how the original system works

internal
models

consequences

internal model

environment

- if we use a Turing-complete modelling language, we will likely be able to model the calculations performed by the brain as well
- the implementation/hardware level can be separated*, we can start modelling from the top down

what formalism should we use?

- there are infinitely many, but with increasing complexity they often become equivalent (Turing complete).
- we can choose one that fits well with the known neurobiology
- bottom-up approach
- a potential problem is that our neurobiological knowledge is constantly changing (see McCulloch-Pitts neuron)
- modeling neurons, neural networks
- http://cneuro.rmki.kfki.hu/education/neuromodel

what formalism should we use?

- there are infinitely many, but with increasing complexity they often become equivalent (Turing complete).
- we can choose one that fits well with the known neurobiology
- bottom-up approach
- a potential problem is that our neurobiological knowledge is constantly changing (see McCulloch-Pitts neuron)
- modeling neurons, neural networks
- http://cneuro.rmki.kfki.hu/education/neuromodel
- or we can use a formalism that fits well with the computational problems facing the brain, known behaviour and introspection
- top-down approach
- what system makes it simple to formulate and solve representation, perception, learning, reasoning, language use, decision-making, etc.?

logic

All humans are mortal
Aristotle is human
Aristotle is mortal

logic

All greeks wear togas
Socrates is greek

logic

All A are B
\mathbf{X} is an \mathbf{A}

Therefore \mathbf{X} is \mathbf{B}

logical system

- what are distinct states of the system (propositions)?
- we decompose these using state variables (atomic propositions)
- which of these states are possible states of the system?
- we can summarise these in a truth table

truth table

atomic propositions (variables)

truth table

atomic propositions (variables)

truth table

how can we use the table for drawing inferences?

cough	has cold	has TB	possible?
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

inference

if sj . coughs but not cold, is it TB?
yes

1st problem

megoldás

introduce operators to more

A	B	A \vee B
t	t	t
t	f	t
f	t	t
f	f	f

$$
\neg, \vee, \wedge, \rightarrow, \leftrightarrow
$$

operators

conditional truth table

\neg	negation	A	B	$A \vee B$
V	or	t	t	t
		t	f	t
\wedge	and	f	t	t
\longrightarrow	if, then	f	f	f

$\leftrightarrow \quad$ if and only if

operators

cough	has cold	has TB	possible?
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

$(M \vee T) \leftrightarrow K$

new rules of inference

$\neg \neg A \rightarrow A$
$A, B \rightarrow A \wedge B$
$(\neg A \wedge \neg B) \rightarrow \neg(A \vee B)$
$((A \rightarrow B) \wedge A) \rightarrow B$
if it is not true that it is not A then A
if it is true that A and it is true that B then it is true that A and B
if it is not A and not B, then it is not true that A or B
if given A it is true that B, and A is true, then B is true

higher order logics

higher order logics

truth table

rules of chess

propositional logic ~ 1000 pages
first order logic ~ 1 page

higher order logics

truth table

propositional logic

1st order logic
λ-calculus
UTM

2nd problem

if subject coughs，is it TB？
フ＿（ツ）＿「

cough	has cold	has TB	possible？
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

how should we choose these numbers?

Cox-theorem

- represent plausibility (H) with real numbers
- consistency: regardless of which order we apply rules to compute plausibilities, we should get the same number given the same information

- direction of changes of plausibility
if $\quad H(A \mid i)$ increases, then

$$
H(\neg A \mid i) \text { decreases }
$$

$H(A \wedge B \mid i)$ increases

- If plausibility satisfies these requirements then it is isomorphic to a probability measure, with the usual definition of conditional probability

$$
H(\cdot \mid i) \simeq P(\cdot \mid i)
$$

Dutch Book argument

- assumes that we are willing to make bets according to our degrees of belief/plausilities
- if our beliefs don't satisfy these consistency rules, then there will exist a set of bets that the we would accept, even though it would guarantee a loss

goals for today

- what is knowledge?
- what are internal models?
- what are the limits of representing knowledge with neurons?
- why are we going to use probability theory as a mathematical framework in the rest of the course?

Kolmogorov axioms

- probabilities of events are real numbers btwn. 0 and 1

cough	sneeze	flu	TB	probability
t	t	t	t	0.1
t	t	f	f	0.02

Kolmogorov axioms

- probabilities of events are real numbers btwn. 0 and 1
- probability of definite event is 1
- probabilities of mutually exclusive events are additive

cough	sneeze	flu	TB	probability
t	t	t	t	0.1
t	t	f	f	0.02
\ldots	\ldots	\ldots	\ldots	\ldots
f	f	f	f	0.3

inference = conditional prob.

$$
P(T B \mid \text { cough }, \neg f l u)=?
$$

cough	sneeze	flu	TB	probability
t	t	t	t	0.1
t	t	f	f	0.02
\ldots	\ldots	\ldots	\ldots	\ldots
i	i	i	i	0.0

- "what is the probability of A given B?"

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

- can be seen as generalisation of \longrightarrow

problem

- $2^{n}-1$ numbers are needed to specify full probability table
- could we use same trick as before?
- compose full table from smaller tables?

- probability distribution can be written as product of conditionals

$$
P\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}\right) P\left(x_{2} \mid x_{3}\right) \ldots P\left(x_{n}\right)
$$

- this can be used to introduce graphical models
- we will look at a simple example now, and go into more detail during the next lecture

graphical model

logic

probability

truth table
joint probability table
propositional logic

d. graphical model

1st order logic
λ-calculus

$\psi \lambda$-calculus
UPTM

logic

probability

truth table
propositional logic

d. graphical model

1st order logic
λ-calculus
UTM
probabilistic
programs

probabilistic program

- Turing-complete language
- random choice operator

- conditioning (inference) as language primitive

probabilistic program

$a=\mathrm{flip}(0.3)$	
$\mathrm{b}=\mathrm{flip}(0.3)$	000
$\mathrm{c}=\mathrm{flip}(0.3)$	01
$a+b+c$	20

sampling

Pyro

distribution

Edward

\downarrow
probabilistic model
(program/distribution)
－Octodad™ Editor－Content／Levels／Church＿SubReception．irr
\square

| Scene Tree |
| :---: | :---: |
| Collapse |
| \square |\quad Go ToID

（2）（Levelinfo）＿999
Architecture
ArchitectureTemp
Chairs

Attributes		$4 \times$
	圆	

1－ID
Name
Id
AbsolutePosition -1
1．783，10．972，1．703
田 Position
$1.783,10.972,1.703$
田 Rotation
1．1．1
\square 1－Transform Settings
IgnoreParentTransfo \square False

\square 2－General Flags

Visible

	［／］True
	［V］True
	［V］True
	False

Loaded mesh：Content／Models／Church／BananaBowICOL．obj
Loaded texture：Content／Models／Church／BananaWholeTexture．jpg
Loaded mesh：Content／Models／Church／BananaWhole．obj
Loaded texture：Content／Models／Editor／default＿objective．png Loaded mesh：Content／Models／Editor／Path．obj
Loaded texture：Content／Models／Editor／Gray．png
Loaded texture：C：IUsersiKevin！DesktoplOctodad 21OctodadlaalOctodadiContentModels \Church／archway． Loaded mesh：CiUsers IKeviniDesktoplOctodad 210ctodadlaalOctodadiContentiModelsiChurchlarchway．o

Level note
Scene N
Scene S
Name
$\begin{array}{l}\text { DanceM } \\ \text { DiningPla } \\ \text { Door }\end{array}$
:---
Scene N
Scene S
Name
$\begin{array}{l}\text { DanceM } \\ \text { DiningPla } \\ \text { Door }\end{array}$

Models Door Doorkey DoorStas DressCa
Dressing Dressing
Figure FlickerLi Flirkerl is

Add blocks, blocks made of styrofoam, blocks made of lead, blocks made of goo, table is made of rubber, table is actually quicksand, pour water on the tower, pour honey on the tower, blue blocks are glued together, red blocks are magnetic, gravity is reversed, wind blows over table, table has slippery ice on top...

[Battaglia et al., 2013]

A
i) primitives
ii) sub-parts
iii) parts
iv) object template

B

procedure GenerateType

$\kappa \leftarrow P(\kappa) \quad \triangleright$ Sample number of parts
for $i=1 \ldots \kappa$ do
$n_{i} \leftarrow P\left(n_{i} \mid \kappa\right) \quad \triangleright$ Sample number of sub-parts for $j=1 \ldots n_{i}$ do
$s_{i j} \leftarrow P\left(s_{i j} \mid s_{i(j-1)}\right) \triangleright$ Sample sub-part sequence end for
$R_{i} \leftarrow P\left(R_{i} \mid S_{1}, \ldots, S_{i-1}\right) \quad \triangleright$ Sample relation
end for
$\psi \leftarrow\{\kappa, R, S\}$
return @GENERATETOKEN $(\psi) \quad$ Return program
v) exemplars

procedure GenerateToken (ψ)

for $i=1 \ldots \kappa$ do

$$
\begin{aligned}
S_{i}^{(m)} & \leftarrow P\left(S_{i}^{(m)} \mid S_{i}\right) \quad \triangleright \text { Add motor variance } \\
L_{i}^{(m)} & \leftarrow P\left(L_{i}^{(m)} \mid R_{i}, T_{1}^{(m)}, \ldots, T_{i-1}^{(m)}\right)
\end{aligned}
$$

vi) raw data

$$
T_{i}^{(m)} \leftarrow f\left(L_{i}^{(m)}, S_{i}^{(m)}\right) \triangleright \text { Compose a part's trajectory }
$$

end for
$A^{(m)} \leftarrow P\left(A^{(m)}\right) \quad \triangleright$ Sample affine transform $I^{(m)} \leftarrow P\left(I^{(m)} \mid T^{(m)}, A^{(m)}\right) \quad \triangleright$ Sample image
return $I^{(m)}$

One-knower

$\lambda S .($ if (singleton? S)
"one"
undef)

Three-knower

```
\(\lambda S\). (if (singleton? \(S\) )
    "one"
    (if (doubleton? S)
        "two"
        (if (tripleton? S)
            "three"
            undef))
```

Singular-Plural

```
\lambdaS.(if (singleton?S)
    "one"
    "two")
```


Two-knower

$$
\begin{aligned}
& \lambda S .(\text { if }(\text { singleton? } S) \\
& \text { "one" } \\
& \text { (if (doubleton? } S \text {) } \\
& \text { "two" } \\
& \text { undef)) }
\end{aligned}
$$

CP-knower

```
    \lambdaS . (if (singleton? S)
        "one"
        (next (L (set-difference S
```

 (select \(S\))))))
 Mod-5
λS. (if (or (singleton? S)
(equal-word? (L (set-difference S)
(select S))
"five"))
"one"
(next (L (set-difference S
(select S)))))

2N-knower
λS. (if (singleton? S)
"one"
(next (next (L (set-difference $S($ select $S))))$))

summary

- knowledge of environment can be represented in physical systems
- we can use formal systems for an abstract description of systems
- due to the universality of computation, we can use formal systems that are optimised for computational problems that the brain has to solve
- classical logic can only handle true/false statements, but most things we are interested in are uncertain
- logic can be extended to handle uncertain knowledge, by allowing truth values to be between true and false (degree of belief/plausibility)
- it is advantageous if beliefs form a probability measure
- for realistic numbers of variables this direct representation through probability tables is often not feasible
- compositionality (infinite use of finite building blocks) can be used to mitigate this issue (e.g. graphical models)
- universal probabilistic languages

key concepts

- computability, universal Turing-machine
- generative model (probabilistic environment simulator)
- probability, conditional probability
- probabilistic inference as conditional probability

supporting material

davidnagy.web.elte.hu/references/knowledgerep thesisexcerpt.pdf

formal systems

D. Hofstadter

Gödel Escher Bach
L.E. Szabó 2007

Bevezetés a matematikai logikába
http://philosophy.elte.hu/leszabo/Logika/logika.pdf

universality of computation

G. Boolos, J.P. Burgess, R.C. Jeffrey Computability and Logic

logical interpretation of probability theory

E. T. Jaynes
Probability Theory

probabilistic programs

N. Goodman

Probabilistic Programs: A New Language for AI
https://www.youtube.com/watch?v=fclvsoaUl-U

Antikythera mechanism
https://www.youtube.com/watch?v=UpLcnAlpVRA

Lego antikythera

https://www.youtube.com/watch?v=RLPVCJjTNgk

Babbage's difference engine

https://www.youtube.com/watch?v=jiiRgdaknJCg

Universal Turing machine from lego

https://www.youtube.com/watch?v=KrNTmOSVW-U
Universal Turing machine in game of life https://www.youtube.com/watch?v=My8AsV7bA94

assignments

- running the Turing machine given as an example on an empty tape (filled with Os), starting from state A, what happens in the first 5 steps? (what are the tape states?)

Tape symbol	Current state A			Current state B			Current state C		
	Write symbol	Move tape	Next state	Write symbol	Move tape	Next state	Write symbol	Move tape	Next state
0	1	R	B	1	L	A	1	L	B
1	1	L	C	1	R	B	1	R	HALT

- in the introduction of graphic models, we said that, in the general case, $2^{n}-1$ numbers are required to specify the entire distribution, where n is the number of variables. Why?
- in the graphic model given as an example (slide 86), is it possible that subject has the flu, but doesn't sneeze?
- in the example logical system (slide 67) can it happen that subject is sick but does not cough?

