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• Computation - determining the challenge:  
through the goals of the biological agent phrasing a 
mathematical model that is capable of addressing the 
challenge


• Algorithm - solving the challenge can be achieved in many 
different ways that can be weighed based on different factors


• Implementation - physical realization of the algorithm, in the 
case of neuroscience, based on neurons, spikes, etc
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goals for today

• what is knowledge? 

• what are internal models?

• what are the limits of representing knowledge 

with neurons?

• why are we going to use probability theory as a 

mathematical framework in the rest of the 
course?
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what is knowledge?

• how do we test knowledge?
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what is knowledge?

• how do we test knowledge?

• can solve previously unseen examples (e.g. 

addition)

• can use dates and other knowledge for new 

inferences

• can answer “what if” or “what is going to 

happen” questions 



• But we also call it knowledge if the subject

• can raw an elephant

• has a good chance of hitting a ball back with a 

tennis racket

• can plan quick trips within bp using public 

transport

• can tell you the rules of chess

• can play chess well


what is knowledge?



• taken together, we have covered a large proportion of 
possible tests of knowledge.


• assuming that we think of the brain as a physical 
system,


• how could we build a physical system that would pass 
these tests?


• let us look at an early example where we are 
interested in the movements of celestial bodies 
such as the sun and the moon

what is knowledge?



  



Antikythera mechanism

• we are interested in the movements of the planets, the sun and the 
moon


• highlight parts of the real system that are relevant from this point of view

• e.g. neglect dark matter, atmospheres of planets, inner structure of 

planets etc.



Antikythera mechanism

• we build a model

• a machine where the parts we have identified with relevant 

variables in the real system work in approximately the same way 

• then, we can operate this machine to answer questions about the real 

system

• e.g. to predict eclipses


• what are the limits to constructing such models?



Can a machine simulate another machine?



  



Can a machine compute something that no other 
machine can simulate?



Alan Turing

1912-1954





Turing-machine
• an infinite tape with cells

• on which it can


• write symbols

• erase symbols

• read symbols

• move between cells

• end the computation


• which of these it performs at any time depends on two things:

• what symbol was read

• what state the machine is in


• where the appropriate action for each symbol - state pair is 
given in advance in a table



Tape 
symbol

Current state A Current state B Current state C

Write 
symbol

Move 
tape

Next 
state

Write 
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Move 
tape

Next 
state

Write 
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Move 
tape

Next 
state

0 1 R B 1 L A 1 L B

1 1 L C 1 R B 1 R HALT
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There exists a universal Turing machine such that if we give it on 
tape


• the instructions of another Turing machine

• and its input


then the output will be the output of the given Turing machine 
given the given input.

9F : F (fi, x) = fi(x) 8i, x

universal TM



x ?

• how does this relate to the brain?

• can the same functions be calculated with neurons?

• with these machines can you calculate everything that the brain can?


• or maybe neurons know something that nothing else does?

• even something that we cannot model mathematically?



Walter Pitts

1923-1969

https://nautil.us/issue/21/
information/the-man-who-tried-to-
redeem-the-world-with-logic

https://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic


(McCulloch&Pitts 1943)

McCulloch-Pitts neuron



two states:

non-active

active

McCulloch-Pitts neuron

(McCulloch&Pitts 1943)
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McCulloch-Pitts neuron



(McCulloch&Pitts 1943)
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Perceptron
1957





y = σ ∘ Wn ∘ . . . ∘ σ ∘ W1 ∘ x



Connectionism

UTM 



universality of computation
• other general models of computation have also been developed (e.g. 

recursive functions, λ-calculus)

• surprisingly, it turns out that they define exactly the same functions as 

Turing machines

• Church-Turing thesis: anything that can be effectively computed can 

be computed with UTMs

• these are called computable functions

• a stronger claim is that what can be computed by any physical process 

can be computed by a UTM 
• this is an empirical question, but there are no known 

counterexamples in physics (called hypercomputation)

• (e.g. quantum computers can compute the same functions but 

some of them faster)

• Turing-complete or universal language: a set of primitives/components 

that can be used to create a UTM.
https://plato.stanford.edu/entries/computation-physicalsystems/#AbsComConCom













• model is a simplified “copy” of the original system 


• that can be constructed out of cogs, transistors, or even 
neurons


• and in some sense mirrors how the original system works

*: don’t take this too seriously

environmentinternal model



vs
internal 
models



• if we use a Turing-complete modelling language, we will likely be 
able to model the calculations performed by the brain as well


• the implementation/hardware level can be separated*, we can start 
modelling from the top down

environmentinternal model

*: don’t take this too seriously

consequences



• there are infinitely many, but with increasing complexity they often 
become equivalent (Turing complete).

• we can choose one that fits well with the known neurobiology


• bottom-up approach

• a potential problem is that our neurobiological knowledge is 

constantly changing (see McCulloch-Pitts neuron)

• modeling neurons, neural networks

• http://cneuro.rmki.kfki.hu/education/neuromodel

what formalism should we use?



Macijek Albrecht, Braitenberg vehicles



• there are infinitely many, but with increasing complexity they often 
become equivalent (Turing complete).

• we can choose one that fits well with the known neurobiology


• bottom-up approach

• a potential problem is that our neurobiological knowledge is 

constantly changing (see McCulloch-Pitts neuron)

• modeling neurons, neural networks

• http://cneuro.rmki.kfki.hu/education/neuromodel


• or we can use a formalism that fits well with the computational 
problems facing the brain, known behaviour and introspection


• top-down approach

• what system makes it simple to formulate and solve 

representation, perception, learning, reasoning, language use, 
decision-making, etc.?

what formalism should we use?



All
Aristotle is human

Aristotle is mortal

humans are mortal

logic



All
Socrates is greek

Socrates wears a toga

greeks wear togas

logic



All
X is an A

Therefore X is B

A are B

syllogism

logic



• what are distinct states of the system 
(propositions)?


• we decompose these using state variables 
(atomic propositions) 


• which of these states are possible states of the 
system?


• we can summarise these in a truth table

logical system



atomic propositions (variables)

köhög megfázás tüdőrák lehetséges?
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

truth table

cough has cold has TB



atomic propositions (variables)

distinct states of 
system

köhög megfázás tüdőrák lehetséges?
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

truth table

cough has cold has TB



köhög megfázás tüdőrák lehetséges?
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

how can we use the table for drawing inferences?

truth table

cough has cold has TB possible?



köhög megfázás tüdőrák lehetséges?
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

if sj. coughs but not cold, is it TB? yes

has cold}
no 
cough}

inference

cough has cold has TB possible?
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1st problem



A B A _ B

t t t
t f t
f t t
f f f

introduce operators to more 
compactly represent truth 
table

¬, _, ^, !, $

megoldás



¬, _, ^, !, $negation

¬, _, ^, !, $or

¬, _, ^, !, $and

¬, _, ^, !, $if, then

¬, _, ^, !, $ if and only if

A B A _ B

t t t
t f t
f t t
f f f

operators
conditional truth table



köhög megfázás tüdőrák lehetséges?
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

(M _ T ) $ K

operators

cough has cold has TB possible?



¬¬A ! A if it is not true that it is not A then A

if it is true that A and it is true 
that B then it is true that A and B

A,B ! A ^B

if it is not A and not B, then it is not 
true that A or B

(¬A ^ ¬B) ! ¬(A _B)

if given A it is true that B, and A 
is true, then B is true

((A ! B) ^A) ! B

new rules of inference



higher order logics
truth table

boole operators
truth value to truth 

value

A B A _ B

t t t
t f t
f t t
f f f

¬, _, ^, !, $ propositional logic



propositional logic

1st order logic

truth table

rules of chess
propositional logic ~ 1000 pages

first order logic ~ 1 page

expressive pow
er

predicates
objects to truth 

values
Fekete(kutya)

quantifiers
object variables to 

objects
8, 9

higher order logics



expressive pow
er

higher order logics

λ-calculus

UTM

propositional logic

1st order logic

truth table



köhög megfázás tüdőrák lehetséges?
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

if subject coughs, is it TB?  ¯\_(ツ)_/¯

2 R

2nd problem

cough has cold has TB possible?



how should we choose these numbers?



• represent plausibility (H) with real numbers

• consistency: regardless of which order we apply rules 

to compute plausibilities, we should get the same 
number given the same information


• direction of changes of plausibility

H(A|i)if increases, then

H(¬A|i) decreases

H(A ^B|i) increases

• If plausibility satisfies these requirements then it is isomorphic to a 
probability measure, with the usual definition of conditional probability

H(·|i) ' P (·|i)

Cox-theorem



• assumes that we are willing to make bets according to our 
degrees of belief/plausilities


• if our beliefs don’t satisfy these consistency rules, then there will 
exist a set of bets that the we would accept, even though it 
would guarantee a loss

Dutch Book argument



goals for today

• what is knowledge? 

• what are internal models?

• what are the limits of representing knowledge 

with neurons?

• why are we going to use probability theory as 

a mathematical framework in the rest of the 
course?



• probabilities of events are real numbers btwn. 0 and 1


cough sneeze flu TB probability

t t t t 0.1
t t f f 0.02
... ... ... ... ...
f f f f 0.3

2 (0, 1)

Kolmogorov axioms



• probabilities of events are real numbers btwn. 0 and 1

• probability of definite event is 1

• probabilities of mutually exclusive events are additive

cough sneeze flu TB probability

t t t t 0.1
t t f f 0.02
... ... ... ... ...
f f f f 0.3

X
P (wi) = 1}

Kolmogorov axioms



cough sneeze flu TB probability

t t t t 0.1
t t f f 0.02
... ... ... ... ...
f f f f 0.3

P (TB|cough,¬flu) =?

no cough

flu

rest must sum to 1P (A|B) =
P (A,B)

P (B)

• “what is the probability of A given B?”

inference = conditional prob.

• can be seen as generalisation of  ¬, _, ^, !, $
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• could we use same trick as before?

• compose full table from smaller 

tables?

•             numbers are needed to 
specify full probability table
2n � 1

P (x1, x2, x3, ..., xn) = P (x1|x2)P (x2|x3)...P (xn)

• probability distribution can be written as product of conditionals

• this can be used to introduce graphical models

• we will look at a simple example now, and go into more 

detail during the next lecture

problem



TBflu

coughsneeze

TB=t

0.1

flu=t

0.2

TB flu cough=t

t t 0.9
t f 0.8
f t 0.75
f f 0.1

flu sneeze=t

t 0.8
f 0.2

graphical model



propositional logic

1st order logic

λ-calculus

truth table joint probability table

d. graphical model

ψλ -calculus

UTM UPTM

logic probability



propositional logic

1st order logic

λ-calculus

truth table joint probability table

d. graphical model

probabilistic 
programsUTM

logic probability



 flip (0.5)

or0 1

• random choice operator

• conditioning (inference) as language 
primitive

probabilistic program

• Turing-complete language



0

0,125

0,25

0,375

0,5

0 1 2 3

P (n) =

✓
3

n

◆
0.3n0.73�n

a = flip(0.3)
b = flip(0.3)
c = flip(0.3)
a + b + c

1
0
1
2

0
0
0
0

0
0
1
1

sampling distribution

probabilistic program



probabilistic model

(program/distribution)







[Lake et al, 2016]



[Battaglia et al., 2013]



[Battaglia et al., 2013]





[Lake et al, 2016]



[Lake et al, 2016]



[Piantadosi et al, 2012]



summary
• knowledge of environment can be represented in physical systems

• we can use formal systems for an abstract description of systems

• due to the universality of computation, we can use formal systems that 

are optimised for computational problems that the brain has to solve

• classical logic can only handle true/false statements, but most things 

we are interested in are uncertain

• logic can be extended to handle uncertain knowledge, by allowing 

truth values to be between true and false (degree of belief/plausibility)

• it is advantageous if beliefs form a probability measure

• for realistic numbers of variables this direct representation 

through probability tables is often not feasible

• compositionality (infinite use of finite building blocks) can be used 

to mitigate this issue (e.g. graphical models)

• universal probabilistic languages



key concepts

• computability, universal Turing-machine


• generative model (probabilistic environment simulator)


• probability, conditional probability


• probabilistic inference as conditional probability



davidnagy.web.elte.hu/references/knowledgerep_thesisexcerpt.pdf

supporting material

http://davidnagy.web.elte.hu/references/knowledgerep_thesisexcerpt.pdf


formal systems

L.E. Szabó 2007

Bevezetés a matematikai logikába
http://philosophy.elte.hu/leszabo/Logika/logika.pdf

D. Hofstadter

Gödel Escher Bach

universality of computation

G. Boolos, J.P. Burgess, R.C. Jeffrey

Computability and Logic

http://philosophy.elte.hu/leszabo/Logika/logika.pdf


logical interpretation of probability theory

E. T. Jaynes

Probability Theory

probabilistic programs

N. Goodman

Probabilistic Programs: A New Language for AI
https://www.youtube.com/watch?v=fclvsoaUI-U

https://www.youtube.com/watch?v=fclvsoaUI-U


videos
Antikythera mechanism
https://www.youtube.com/watch?v=UpLcnAIpVRA


Lego antikythera
https://www.youtube.com/watch?v=RLPVCJjTNgk


Babbage's difference engine
https://www.youtube.com/watch?v=jiRgdaknJCg


Universal Turing machine from lego
https://www.youtube.com/watch?v=KrNTmOSVW-U


Universal Turing machine in game of life
https://www.youtube.com/watch?v=My8AsV7bA94

https://www.youtube.com/watch?v=jiRgdaknJCg
https://www.youtube.com/watch?v=My8AsV7bA94


assignments

Tape 
symbol

Current state A Current state B Current state C
Write 

symbol
Move 
tape

Next 
state

Write 
symbol

Move 
tape

Next 
state

Write 
symbol

Move 
tape

Next 
state

0 1 R B 1 L A 1 L B
1 1 L C 1 R B 1 R HALT

• running the Turing machine given as an example on an empty tape 
(filled with 0s), starting from state A, what happens in the first 5 steps? 
(what are the tape states?)

• in the introduction of graphic models, we said that, in the general 
case,              numbers are required to specify the entire 
distribution, where n is the number of variables. Why?


• in the graphic model given as an example (slide 86), is it possible 
that subject has the flu, but doesn’t sneeze?


• in the example logical system (slide 67) can it happen that subject 
is sick but does not cough?

2n � 1


